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ABSTRACT
The rising popularity of Vehicle-to-Network (V2N) applications is
driven by the Ultra-Reliable Low-Latency Communications (URLLC)
service offered by 5G. The availability of distributed resources could
be leveraged to handle the enormous traffic arising from these ap-
plications, but introduces complexity in deciding where to steer
traffic under the stringent delay requirements of URLLC. In this
paper, we introduce the V2N Computation Offloading and CPU
Activation (V2N-COCA) problem, which aims at finding the com-
putation offloading and the edge/cloud CPU activation decisions
that minimize the operational costs, both monetary and energetic,
under stringent latency constraints. Some challenges are the proven
non-monotonicity of the objective function w.r.t. offloading deci-
sions, and the no-existence of closed-formulas for the sojourn time
of tasks. We present a provably tight approximation for the lat-
ter, and we design BiQui, a provably asymptotically optimal and
with linear computational complexity w.r.t. computing resources
algorithm for the V2N-COCA problem. We assess BiQui over real-
world vehicular traffic traces, performing a sensitivity analysis and
a stress-test. Results show that BiQui significantly outperforms
state-of-the-art solutions, achieving optimal performance (found
through exhaustive searches) in most of the scenarios.

CCS CONCEPTS
• Networks → Network performance modeling; Network
management.

KEYWORDS
Vehicle-to-Network, V2N, Ultra-reliable Low-Latency Communica-
tions, URLLC, Queueing Theory, Algorithm design, Optimization
problem, Asymptotic optimality.
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1 INTRODUCTION
Network intelligence has emerged as a pivotal goal for 6G. In
conjunction with recent advancements in the automotive sector,
Vehicle-to-Network (V2N) applications attract significant interest
from both academia and industry [32]. A notable instance of V2N
communication is Tele-operated Driving (ToD), wherein vehicles
are remotely controlled by operators who rely on inputs from the
vehicles, including augmented video feeds from the vehicle’s front
camera that highlight recognized objects or obstacles to be avoided.

For safety-critical applications like these, an Ultra-Reliable Low
Latency Communication (URLLC) service is indispensable [7] be-
cause it will ensure that the delay experienced by any task between
the vehicle and the network remains below a specific threshold
with a probability exceeding a predefined reliability threshold. For
example, ToD services mandate that transmissions are completed
within 100 ms with a 99.999% reliability [7], encompassing trans-
mission and propagation delays, as well as the sojourn time (i.e.,
waiting plus service time) at the servers. Given the stringent na-
ture of these requirements, any delay could potentially result in
vehicular crashes, including those involving pedestrians.

To ensure timely processing of vehicular tasks, these can be of-
floaded to servers located either in the cloud or at the network edge.
While cloud servers offer greater computational power, their rela-
tive distance from the vehicles could introduce significant delays.
On the other hand, edge servers, colocated with Road-Side Units
(RSUs) along roads, can provide more immediate services, albeit at
a potentially higher cost or with less computational power [22].

This presents a challenging trade-off due to the dynamic scaling
of computing resources. Dimensioning the system to handle peak
traffic ensures URLLC service availability but leads to resource
wastage during off-peak hours. Adapting resources based on de-
mand could result in significant savings for service providers, yet
maintaining URLLC guarantees for vehicular applications remains
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paramount. The challenge is scaling computing resources effec-
tively, determining the appropriate number of processing units at
both edge and cloud that guarantees an appropriate performance.

This work tackles the challenges above. In a nutshell:
• We introduce the V2N Computation Offloading and CPU
Activation (V2N-COCA) Problem, a novel problem that aims
at minimising the operational costs (monetary, energetic)
of distributed resources while ensuring the latency and re-
liability requirements of V2N URLLC services, by decid-
ing which tasks to offload at the edge or at the cloud, and
how many CPUs to activate. We rigorously study the prob-
lem’s structural properties, proving, among others, the non-
monotonicity of the objective function and the non-continuity
of the feasible space boundary w.r.t the offloading decisions.

• Motivated by experimental evidence, we propose an approx-
imation of the sojourn time (i.e., the sum of the waiting and
service time), for which it currently does not exist a closed-
form, challenging the URLLC requirement guarantee. Our
approximation exploits the waiting time of 𝑀/𝐷/𝑘 queues.
We thoroughly examine our proposal, comparing it against
the optimal oracle found via exhaustive searches. We rigor-
ously demonstrate that our approximation works perfectly
when targeting vehicular applications based on tasks stem-
ming from video frames, and we discuss why and how our
proposal can be applied to different domains.

• We exploit the V2N-COCA Problem derived structural prop-
erties and its feasibility region, and design an efficient al-
gorithm for its solution. We prove its correctness, its low
computational complexity, and its asymptotic optimality.

• We use real traces to evaluate the behaviour of our algorithm
under realistic scenarios, while assessing its performance
under a variety of conditions. We also perform an extensive
sensitivity analysis on our system’s parameters. The system
parameterization is dictated by the related literature.

In §2 we discuss the related works. In §3 we present our system
model. In §4 we introduce and analyse our optimization problem. In
§5 we introduce and evaluate our proposal for the characterisation
of the tasks’ sojourn time at the servers. In §6 we design and analyse
our algorithm and its computing and approximability properties.
In §7 we evaluate our algorithm, and in §8 we conclude the paper.

2 RELATEDWORKS
Vehicles-to-anything (V2X) conveys communications among ve-
hicles (V2V), pedestrians (V2P) and network/infrastructure (V2N),
being a superset of all of them. Resource provisioning and offload-
ing for V2V/V2P are also of interest in V2N, as both vehicles and
phones have computing capacity in the network. We now overview
offloading and resource scaling/allocation in V2X, separately and
jointly, URLLC service provisioning, and waiting times for 𝑀/𝐺/𝑘 .

Traffic Offloading in V2X Scenarios. The literature proposes
offloading tasks to other vehicles [26] or edge premises [11, 18],
e.g., leveraging Reinforcement Learning (RL) approaches [18, 25],
and aim at minimizing the average waiting time [17] considering
the channel quality [11]. We also consider (𝑖) the resource provision-
ing; and (𝑖𝑖) processing time of each task at the edge/cloud. Hence,
guaranteeing URLLC constraints are met in an end-to-end fashion.

Resource Scaling and Allocation in V2X Scenarios. Works
as [23, 35] aim at accommodating enough radio resource blocks
for V2X services, while [20] allocates enough resources in the V2X
channel resorting to RL. However, such works [20, 23, 35] just
analyze the radio link and oversee the tight 99.999-percentile delay
requirement of URLLC services. Our work accounts for queuing and
processing delays, and allocates edge/cloud resources to ensure that
queuing and processing delays meet the 99.999 percentile.

Joint task offloading and resource allocation. To the best of
our knowledge, [12, 21, 29] are the only works that jointly tackle
task offloading and resource allocation in V2X scenarios. However,
they oversee delay’s stochastic nature, considering it as a ratio
between the demand and computing resources [12, 29], or ignore
the V2X URLLC requirement [21]. Work [24] maintains a stable
length for queues, but considering only average metrics that do not
capture reliability requirements. Our work considers the inherent
stochasticity of queuing and processing delays, and guarantees delay
and reliability constraints imposed by V2X.

URLLC Service Provisioning. Works [8, 33] leverage Stochastic
Network Calculus (SNC) to infer the delay violation probability in
URLLC, to scale the slice radio resources [8], or decide where to
process the tasks [33]. Rather than just considering the radio network,
we account for the end-to-end delay of URLLC services and advocates
to queuing theory instead of SNC. Hence, we capture the packetized
nature of internet traffic and provide tighter bounds than SNC.

M/G/k literature. Existing works leverage deficit renewal equa-
tions [30] or difference-differential equations [16] to approximate
the M/G/k waiting time distribution, leading to errors in the order
of 10−2, which do not suffice for URLLC services as ToD. Rather, our
approximation convolves the M/D/k waiting time with the gamma
mixture service time, ensuring URLLC with errors lower than 10−5.

3 SYSTEM MODEL
We illustrate in Fig. 1 the considered scenario: passing vehicles are
provided wireless connectivity by Road Side Units (RSUs) deployed
along the road or street. Vehicles use a remote driving service where
highly-accurate computationally-intensive Artificial Intelligent (AI)
algorithms decide which actions vehicles should take based on their
surroundings [7]. Vehicles hold a CPU in which some computations
can be performed, e.g., to preprocess frames before actually perform-
ing heavier AI-related tasks [1]. However, given the complexity of
these algorithms and the possible inter-vehicle interactions, the
complex AI tasks are offloaded to external resources, either at the
edge or the cloud: edge resources might provide shorter Round-Trip
Times (RTTs), but there might not be enough computing capacity
for peak-hour conditions or they may become too expensive, and
therefore cloud resources might be preferable despite their longer
RTTs. The main objective of the service provider is to activate the
computation resources that minimize the operational costs while
ensuring the URLLC service guarantees.

URLLC application and offloading decisions. Each vehicle 𝑣
generates a flow of computing tasks at a rate 𝜆𝑣 , e.g., a flow of video
frames taken from a front camera to be processed. For simplicity,
we assume a single URLLC service, which implies that all vehicles
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Notation Description

𝑉 Number of vehicles
𝜆𝑣 Frame rate from vehicle 𝑣

𝜆𝐶 , 𝜆𝐸 Incoming rate at cloud and edge
𝑠, 𝑆𝑖 ( ·) , 𝑆𝑐 ( ·) Task avg. service time, and service time at edge and cloud

𝐷𝑠𝑜 𝑗𝑜 Sojourn time to process the task
𝐷𝑡𝑟𝑎𝑛, 𝐷𝑝𝑟𝑜𝑝 Transmission time and frame propagation delay

𝐷𝑖 Total delay experienced by a task i
𝐸,𝐶 Maximum CPUs at the edge and cloud
𝑐0𝑐 , 𝑐0𝑒 Subscription cost at cloud and edge
𝑐1𝑐 , 𝑐1𝑒 Usage cost at cloud and edge
𝑥, 𝑦 CPUs activated at edge and cloud - DECISION
𝑧 Offloading policy - DECISION

𝑃𝐺 ,𝑇 Reliability requirement and maximum delay
Ω Feasibility region
𝑙𝑖 Frame length of task i

Table 1: Notation Table

generate traffic following the same model and there is a single
service requirement (however, our analysis can be generalised to
capture multiple services with different rates and requirements).
We assume that the URLLC service requires that for each task 𝑖 , its
total delay 𝐷𝑖 (·) must be less than a maximum delay𝑇 with at least
𝑃𝐺 probability [7]. This can be formalised as

P(𝐷𝑖 (·) ≤ 𝑇 ) ≥ 𝑃𝐺 ,∀ task 𝑖 . (1)
We will refer to 𝑇 as the delay requirement and to 𝑃𝐺 as the relia-
bility requirement. Following [19], the length 𝑙𝑖 of frame 𝑖 follows
a distribution that is specific to the service type and video format.
The terms “frames” and “tasks” will be used interchangeably.

In order to avoid conflicts with apps with less stringent delay ap-
plications, URLLC services in practice can be assigned to a dedicated
slice in the network. To ensure a high-quality URLLC vehicular
service, we must preserve the order of the packets within each flow
(i.e., for each vehicle). This can be ensured by implementing a per-
flow traffic split between the edge and the cloud at the RSU, using
e.g., flow hashing [9]. In practice, this implies that the computing
load generated by a portion 𝑧 ∈ [0, 1] of flows is offloaded to the
cloud, and the computing load of the remaining portion (1 − 𝑧)
of flows is executed at the edge1. Let 𝜆𝐸 and 𝜆𝐶 be the incoming
computing demand at the edge and the cloud server, respectively.
Both 𝜆𝐸 and 𝜆𝐶 are, naturally, functions of our offloading decisions
𝑧 and the number 𝑉 of vehicles, and can be computed as:

𝜆𝐸 (𝑧,𝑉 ) = 𝑉𝜆𝑣 (1 − 𝑧) and 𝜆𝐶 (𝑧,𝑉 ) = 𝑉𝜆𝑣𝑧. (2)

Computing resources, activation decisions, service model.
In practice, edge facilities comprise areas of 10-20km [10], hence
one edge pool covers a whole urban area. We assume that there are
up to 𝐸 CPUs available at the edge, and up to 𝐶 CPUs available at
the cloud, whose computing capacity is dedicated to the URLLC
vehicular app. We denote by 𝑥 ∈ {1, . . . , 𝐸} and 𝑦 ∈ {1, . . . ,𝐶}
the number of CPUs to be activated at the edge and at the cloud,
1For cases that the offloading decision may not result in integer solutions, e.g., when
𝑧 = 0.5 and the number 𝑁 of vehicles is odd, it will be needed to round 𝑧 to the
closest value that results in an integer split of vehicles to the edge or to the cloud,
and a confirmation or adjustment that the activated CPUs can handle the incoming
computational load after this rounding.

RSU

edge
CPU
CPU

𝑥
=
1

cloud

CPU
CPU
CPU
CPU

𝑦
=
2

Net
.

𝑧

1 − 𝑧

tasks

Figure 1: Vehicles produce tasks. We offload the task flows
either to the cloud (with probability 𝑧) or to the edge (with
probability 1 − 𝑧). We process the frames by activating 𝑥 =
1 CPU at the edge or 𝑦 = 2 CPUs at the cloud. Maximum
available CPUs: 𝐸 = 2 (edge) and 𝐶 = 4 (cloud).

respectively, which correspond to our activation decisions. We
assume that all CPUs have the same computational capacity 𝐾
cycles per unit of time, and therefore what essentially distinguishes
the edge from the cloud is the number of available CPUs [34, Sec.
2] and their distances to the vehicles (these assumptions could
be relaxed as well). Assuming that the number of cycles required
to process a task is proportional to its length [28] with constant
𝑐 cycles/bit, the service time to process a task of length 𝑙𝑖 equals

𝑆 (𝑙𝑖 ) = 𝑙𝑖 𝑐
𝐾
. (3)

Edge and cloud servers as M/G/k queues. We assume that
there are a large enough group of 𝑉 vehicles using the URLLC
service, each one generating an independent flow of tasks, e.g.,
a video flow. In practice, this will be the most common scenario
in a few years, since most of the vehicles are now manufactured
with such features. Under these conditions, the Palm-Khintchine
Theorem ensures that the aggregated video arrival process follows
a Poisson process at a rate 𝜆 = 𝑉𝜆𝑣 . Given that the offloading
mechanism is based on hashing [9], the resulting flows towards
the edge and the cloud are also two Poisson process (at rates 𝜆𝐸
and 𝜆𝐶 , respectively) since they are the result of a random thinning
of a Poisson process. Frames at each server are enqueued using a
publish/subscribe protocol, and thus each CPU processes frames in
a sequential fashion. As a result, both the edge and cloud servers
can be modeled as two different M/G/k systems: the edge with 𝑥
active servers and arrival rate 𝜆𝐸 = 𝜆(1 − 𝑧), and the cloud with 𝑦
active servers and arrival rate 𝜆𝐶 = 𝜆𝑧. The M/G/k queue is one of
the most general models and does not have closed-form expressions
to characterize the tasks sojourn time (apart from approximations
such as Kingman’s law). In section 4 we present our approximation
to characterize the CDF of the sojourn time.

Total delay𝐷𝑖 experienced by a task 𝑖 . It is defined as the total
time since the task is generated, processed, and sent back to the
vehicle. It can be expressed as a function of the number of vehicles
𝑉 in the system, and the service provider’s activation and offloading
decisions, i.e., variables 𝑥,𝑦 and 𝑧, respectively. Formally:

𝐷𝑖 (𝑉 , 𝑥,𝑦, 𝑧) = 𝐷𝑡𝑟𝑎𝑛 (𝑙𝑖 ) + 𝐷𝑝𝑟𝑜𝑝 + 𝐷𝑠𝑜 𝑗𝑜 (𝑉 , 𝑥,𝑦, 𝑧), (4)

where 𝐷𝑡𝑟𝑎𝑛, 𝐷𝑝𝑟𝑜𝑝 , 𝐷𝑠𝑜 𝑗𝑜 the radio transmission delay, radio-to-
server propagation time (back and forth), and sojourn time of a
task (i.e., waiting plus service time), respectively. We ensure a
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bounded and reliable transmission latency 𝐷𝑡𝑟𝑎𝑛 through a 3GPP-
compliant NR deployment [6, Sec. 7] and Type B frame repeti-
tions [3, Sec. 6.1.2.3.2]. Using a dedicated V2X slice for the service
provider, propagation delays 𝐷𝑝𝑟𝑜𝑝 can also be bounded. Thus, we
focus our analysis on the complex𝐷𝑠𝑜 𝑗𝑜 (𝑉 , 𝑥,𝑦, 𝑧), and we perform
a sensitivity analysis w.r.t. 𝐷𝑝𝑟𝑜𝑝 and 𝐷𝑡𝑟𝑎𝑛 in Sec. 7.

Infrastructure costs. Our analytical framework is able to cap-
ture both different economic models for the cost of the infrastruc-
ture usage, and its energy consumption. Regarding the energy
consumption, the literature [31] identifies two main components:
(i) an energy consumption term caused by the activation of the
servers, which is proportional to the number of activated CPUs,
and (ii) an energy consumption term that is proportional to the
time the servers are busy with executing tasks, i.e., the service
time. Regarding the cost of the infrastructure usage, current pricing
plans [2] also take into account two terms: (i) a “subscription” cost
for accessing a number of resources, which is proportional to the
number of activated CPUs, and (ii) a “usage” cost that is propor-
tional to the time the servers are used. Based on the above, we
define the total cost 𝐾 as a linear combination of the number of
activated CPUs and their service time as follows:

𝐾 (𝑉 , 𝑥,𝑦, 𝑧) := 𝑐0𝑒𝑥 + 𝑐0𝑐𝑦 + 𝑐1𝑐𝜆𝐶 (𝑧,𝑉 )𝑠 + 𝑐1𝑒𝜆𝐸 (𝑧,𝑉 )𝑠, (5)
where the constants 𝑐0𝑒 and 𝑐0𝑐 capture the subscription cost per
CPU at the edge and the cloud, respectively, the constants 𝑐1𝑒 and
𝑐1𝑐 capture the usage cost per time unit at the edge and the cloud,
respectively, and 𝜆𝐶 (𝑧,𝑉 )𝑠, 𝜆𝐸 (𝑧,𝑉 )𝑠 represent the product of the
incoming rate (at the cloud and edge) by the service time. Specif-
ically, 𝑠 = 𝑆 (𝑙𝑖 ) denotes the service time for the average packet
length 𝑙𝑖 , i.e., the average service time. Our cost function is spe-
cific enough to accurately capture existing energetic and monetary
costs. At the same time, it is generic enough to allow for specific
particularizations to be incorporated in it, e.g., by considering a
variety of specific functions for the service time, such as a that in
eq. (3) or a fixed time per task (irrespectively of its length).

4 THE V2N COMPUTATION OFFLOADING
AND CPU ACTIVATION PROBLEM

In this section we first introduce our optimization problem, and
next analyse its structural properties and associated challenges.

Optimization problem. We formalize it as follows:

Problem 1 (V2N Computation Offloading and CPU Activation
(V2N-COCA) Problem).

min
𝑥,𝑦,𝑧

𝐾 (𝑉 , 𝑥,𝑦, 𝑧) (6)

s.t. Eq. (1),
𝑥 ∈ {0, 1, . . . , 𝐸}, and 𝑦 ∈ {0, 1, . . . ,𝐶}, (7)
𝑧 ∈ [0, 1] . (8)

The objective in (6) corresponds to finding the CPU activation
decisions 𝑥 and 𝑦 and offloading decision 𝑧 that minimise the total
operational cost defined in (5). Eq. (1) ensures the URLLC require-
ments of vehicular applications are met. Eq. (7) capture the upper
bounds on the available CPU resources at the edge and the cloud.
Finally, Eq. (8) describes the offloading decision 𝑧 as a ratio in [0, 1].

Param Value

𝑇 100ms
𝑃𝐺 99.999%
𝐷𝑒
prop 18.2ms

𝐷𝑐
prop 22.8ms

𝑐0𝑐 , 𝑐1𝑐 15, 2
𝑐0𝑒 , 𝑐1𝑒 30, 4
𝑠𝑖 , 𝜆 22.5, 1.87 ppms 0.6 0.7 0.8 0.9

900

1,000

1,100

Ω

m
or
e
CP

Us

(𝑥2, 𝑦2, 𝑧2 ) = (16, 32, .685)

(𝑥1, 𝑦1, 𝑧1 )
= (16, 31, .672)

(𝑥3, 𝑦3, 𝑧3 )
= (15, 32, .692)

𝑧

𝐾
(𝑉
,𝑥
,𝑦
,𝑧
)

Figure 2: Total costs vs. offloading decision 𝑧 for the feasibil-
ity region and boundary, depicted for an instance considering
a ToD service [7] and real-world propagation delays [34].

V2N-COCA Problem’s Structural Properties. We use these in
Section 6, to design and analyse our computationally efficient and
asymptotically optimal algorithm for its solution. It holds that:

Proposition 1. The cost function in (5) is increasingly mono-
tone w.r.t. CPU activation decisions 𝑥, 𝑦.

This proposition implies that the minimum cost will be in the
boundary of the feasible region w.r.t. activation decisions.

Proof. We only prove the increasing monotonicity w.r.t. deci-
sion 𝑥 , i.e., CPU activation at the edge. However, exactly the same
arguments can be used to prove the monotonicity w.r.t. decisions 𝑦
of CPU activation at the cloud. Fix𝑉 = 𝑉0, 𝑦 = 𝑦0 and 𝑧 = 𝑧0, and let
𝑓 (𝑥) := 𝐾 (𝑉0, 𝑥,𝑦0, 𝑧0) . By definition, 𝑓 (𝑥) is monotone increasing
in 𝑥 if and only if 𝑥1 > 𝑥2 ⇐⇒ 𝑓 (𝑥1) > 𝑓 (𝑥2) . Observe that the
total service time 𝑆𝐸 = 𝜆𝐸 (𝑧0,𝑉 )𝑠 at the edge, i.e., the aggregate
over all activated CPUs at the edge, is independent of the CPU
activation decisions, since it essentially depends on the amount of
tasks that are sent there, i.e., from the offloading decisions 𝑧0, which
we previously fixed. Similarly for the service time 𝑆𝐶 = 𝜆𝐶 (𝑧0,𝑉 )𝑠
at the cloud. Observing the linearity of Eq. (5) w.r.t. the number 𝑥
of activated CPUs at the edge, we confirm that the monotonicity
condition holds, which concludes the proof. □

Wenext study the feasibility region, with our motivation being to
better understand which points (i.e., decisions) would be preferable
as solutions, to drive the design of our algorithm. The feasibility
region Ω of Problem 1 is defined as Ω :=

{
(𝑥,𝑦, 𝑧) : (1), (7), (8)

}
, i.e.,

intuitivelly, as the set of all those combinations of decisions (𝑥,𝑦, 𝑧)
that meet the URLLC requirements, upper bounds on available
computing resources, and percentage of offloaded computing load.
We illustrate in Fig. 2 the feasibility region for the scenario described
in its caption. In general, it holds that:

Proposition 2. For the feasibility region Ω dictated by eqs.
(1), (7), and (8), it holds that:

(1) It is not continuous w.r.t. the offloading policy 𝑧. In
fact, its boundary is a step function.

(2) It is not monotone w.r.t. the offloading policy 𝑧.
(3) Between two consecutive steps, the boundary is linear

w.r.t. any offloading policy 𝑧.
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Prop. 2 implies that we cannot exploit the continuous nature of
the offloading decisions 𝑧 to find the optimal solution. Still, point
(3) will be useful to design an asymptotically optimal algorithm.

Proof. (1) - (2): non-monotonicity/non-continuity w.r.t. z.
Weperform a proof by finding a non-continuous and non-monotone
counterexample. Fig. 2 was produced by performing exhaustive
searches, and can be thus treated as an oracle. Although this proof
relies on a particular parametrization, in fact it suffices to show that
the monotonicity and continuity properties do not hold in general.
Also, we provide arguments that expose the characteristics of the
the feasible region for any other instance of the problem, i.e., for any
parametrization. Let 𝑧1 = 0.672, 𝑧2 = 0.685, and 𝑧3 = 0.692. Clearly,
𝑧1 < 𝑧2 < 𝑧3 . However, the feasible region found by exhaustive
searches (Fig. 2) suggests that 𝐾 (𝑉 , 𝑥,𝑦, 𝑧1) < 𝐾 (𝑉 , 𝑥,𝑦, 𝑧2), and
𝐾 (𝑉 , 𝑥,𝑦, 𝑧2) > 𝐾 (𝑉 , 𝑥,𝑦, 𝑧3), which contradicts the definition of
monotonicity, and thus concludes the proof for (1). Remark: by
the monotonicity definition, all other parameters except of the
offloading policy 𝑧 should have been fixed, while in our example the
number of cloud CPUs increases from𝑦1 = 31 to𝑦2 = 32 as wemove
offloading from 𝑧1 = 0.672 to 𝑧2 = 0.685. This jump is due to the
URLLC requirement, which implies that an additional CPU needs
to be activated in order to obtain a feasible solution. This concludes
the proof for (2), and the description of our counterexample.

(3): continuity and linearity w.r.t. 𝑧 between consecutive
steps. The steps in the boundary occur due to the change in the
number of minimum CPUs that are needed to ensure an URLLC.
While being in between of two consecutive jumps in the boundary
of the region, i.e., when fixing the number 𝑥 and 𝑦 of edge or cloud
activated CPUs, respectively, the subscription cost given by 𝑐0𝑒 and
𝑐0𝑐 in Eq. (5) is fixed. However, the total service time depends on
the amount of tasks that are assigned, i.e., by the offloading policy
𝑧. By combining eqs. (2), (3), and (5), we conclude the proof. □

Challenges for the design of an efficient solution. The V2N-
COCA Problem is a mixed integer programming problem, with
non-monotone objective function w.r.t. one of its decisions (Prop.
2). An additional major challenge for the design of efficient algo-
rithms to solve it, is the quantification of the total delay𝐷𝑖 (𝑉 , 𝑥,𝑦, 𝑧)
experienced by any task 𝑖 (defined in Eq. (4)), and is the first of
the problem’s constraints, to ensure that URLLC requirements are
met. More specifically, the challenge stems from the fact that, to the
best of our knowledge, no closed-form expressions are available to
quantify the sojourn time 𝐷𝑠𝑜 𝑗𝑜 (𝑉 , 𝑥,𝑦, 𝑧) in M/G/k systems. The
existing approximations for the M/G/k average waiting time do not
suffice in URLLC, and we will compare against them in section 7.

However, due to the safety concerns involved in V2N applica-
tions, the distribution of the sojourn time in the M/G/k system to
ensure that V2N tasks are timely processed, respecting both the
target delay and the reliability requirements. We now present and
validate our approximation for the M/G/k sojourn time distribution.

5 OUR SOJOURN TIME APPROXIMATION
We start by presenting initial thoughts stemming from experimental
evidence, we then discuss the structure of the URLLC requirement
and our approximation proposal, and we validate it both in terms
of accuracy and of impact w.r.t. solving the V2N-COCA Problem.

Type 𝑤𝑖 𝛼𝑖 𝛽𝑖

I 1/12 16.487 21499
B 5/12 15.584 14608
P 6/12 17 15895

Table 2: Parameters for frame
length distribution 𝑙𝑖 [19]
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Figure 3: PDF of
the service time 𝑠𝑖

Remark: We focus on V2N computing tasks performed over
video frames taken e.g., from the front/back camera of autonomous
vehicles [1], and we rely on evidence from the real-world traces
in [19]. Our sojourn time approximation can be generalized and
transferred to any scenario and domain whose data has similar
characteristics. Given the generality of ourmodel, it could also apply
in different settings. For instance, it could be used for augmented
reality applications, such as a remote surgery operation.

Initial thoughts stemming from experimental evidence.
Each vehicle 𝑣 generates an H.264/AVC flow, i.e., a flow of I, B, and
P frames arranged in a Group of Pictures (GOP) [19]. The frame
length of each type 𝑖 ∈ {𝐼 , 𝐵, 𝑃} follows a Gamma distribution with
shape 𝛼𝑖 and scale 𝛽𝑖 in Tab. 2, and thus the frame length of the
flow follows a mixture of them where each type 𝑖 is weighted with
𝑤𝑖 therein. Then, the average video frame length is 𝑙 = 𝑤𝐼𝑎𝐼 𝛽𝐼 +
𝑤𝐵𝑎𝐵𝛽𝐵 + 𝑤𝑃𝑎𝑃 𝛽𝑃 ≈ 260 kb. The number of cycles to process a
video frame is proportional to its length, with a constant of approx.
21.42 cycles/bit [28]. The service time to process a video frame of
length 𝑙𝑖 is given by 𝑠𝑖 = 𝑙𝑖 ×21.42/250 𝜇s, and therefore the average
service time per task for a CPU operating at 250MHz is 𝑠 = 22.3ms.
We depict 𝑠𝑖 ’s Probability Density Function (PDF) in Fig. 3.

The structure of the URLLC requirement in eq. (1) and our
approximation of the sojourn time. M/G/k systems are one of
the most general frameworks for modelling queuing systems, but
there are no closed-form expressions to characterise the distribution
of their total sojourn time 𝑓𝑠𝑜 𝑗𝑜 , which captures the sum of the
waiting and service time. This time equals to the addition of waiting
and service times, and therefore its distribution is given by the
convolution of the distribution of the waiting time 𝑓𝑊 and the
distribution of the service time 𝑓𝑆 , i.e., , 𝑓𝑠𝑜 𝑗𝑜 = 𝑓𝑊 ∗ 𝑓𝑆 . In the
case of V2N applications, the service time could relate to the time
that is needed to process video frames captured by the vehicle
cameras. Such time is directly proportional to the video frame
length which, as discussed above, is distributed as a mixture of
gamma distributions. Motivated by the small variance of such tasks
(see Fig. 3) we make the following proposition to approximate the
sojourn times based on the waiting times of an M/D/k:

Proposition 3. The distribution 𝑓𝑠𝑜 𝑗𝑜 of the sojourn time
𝐷𝑠𝑜 𝑗𝑜 in an M/G/k queue, for video tasks [19], can be approx-
imated with a significance factor 𝛼 = 0.01 by the convolution
of the queuing time distribution 𝑓𝑊 of an M/D/k queue with
deterministic service times, and the service time distribution
𝑓𝑆 defined by [19] (i.e., a mixture of Gamma distributions).
We formulate this as:

𝑓𝑠𝑜 𝑗𝑜 := 𝑓𝑊 (𝑀/𝐺/𝑘 ) ∗ 𝑓𝑆 (𝑀/𝐺/𝑘 )
≈ 𝑓𝑊 (𝑀/𝐷/𝑘 ) ∗ 𝑓𝑆 (𝑀/𝐺/𝑘 ) . (9)
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c (servers) I (Erlang)
I=1 I=2 I=4 I=8

c = 10 (0,1) (0,1) (0,1) (0,1)
c = 15 (0,1) (0,1) (0,1) (0,1)
c = 20 (0,1) (0,1) (0,1) (0,1)

Take-away: in all
scenarios, 𝐻0: “The
CDF from analysis is
slightly below from
the CDF from simula-
tions” is accepted.

Table 3: Comparison of (KS Statistics, P-value) parameters
of the Kolmogorov-Smirnov test for different loads (I) and
number of servers (c) with a significance level 𝛼 = 0.01.

The importance of this proposition is two-fold. First, it provides
a closed-form expression to approximate with accuracy 𝛼 = 0.01
the sojourn time, i.e., with a 99% confidence level in the estimation.
Second, it opens the way for solving Problem 1 by using exist-
ing results in the literature. Indeed, we can get 𝑓𝑊 (𝑀/𝐷/𝑘 ) (𝑡) =
𝑑/𝑑𝑡𝐹𝑊 (𝑀/𝐷/𝑘 ) (𝑡) using the following closed-form expression [13,
Eq. (4.4)]

𝐹𝑊 (𝑀/𝐷/𝑘 ) (𝑡) = 𝑒−𝜆 (𝑘𝐷−𝑡 )
𝑘𝑐−1∑︁
𝑗=0

𝑄𝑘𝑐− 𝑗−1
𝜆 𝑗 (𝑘𝐷 − 𝑡) 𝑗

𝑗 ! ,

where 𝑘 ∈ N, 𝑡 ∈ [(𝑘 − 1)𝐷,𝑘𝐷), and 𝐷 = E[𝑆 (𝑙𝑖 )], and 𝑄 𝑗 the
probability of having up to 𝑗 tasks in the queue in an M/D/k sys-
tem [13]. This supports dynamically scaling the computing re-
sources as needed based on the computing load, thus resulting
in minimisation of their operational costs. We now validate Prop. 3.

Kolmogorov-Smirnov test to rigorously validate Prop. 3. We
compare the Cumulative Distribution Function (CDF) of the so-
journ time obtained by convoluting the service times of 𝑀/𝐺/𝑘
queueing systems with the waiting times of (i) 𝑀/𝐺/𝑘 systems
(obtained through exhaustive simulations), and (ii)𝑀/𝐷/𝑘 systems
(obtained using eq. (4.4) from [13]). We perform the comparison
for different values of the intensity factor 𝐼 = 𝜆/𝜇 (Erlangs) and
number of servers 𝑐 , but due to space limitations we include only
for 𝑐 = 3 servers. We note that the values considered for 𝑐 are in
the order of magnitude of those required when experimenting with
data from a real-trace dataset (see Section 7). We employ the well-
established non-parametric statistical Kolmogorov-Smirnov (KS)
test, which determines whether two samples originate from the
same distribution or not. Our null hypothesis is 𝐻0 : "the CDF from
our approximation is slightly below the actual CDF." It implies that
our analysis could be more conservative in terms of the URLLC,
possibly resulting in a higher probability of being within the target
delay, thus possibly being even more stringent than the URLLC
requirement – and never resulting in latency not within the URLLC
threshold. In the KS test, we accept the null hypothesis 𝐻0 when
the 𝑝-value is greater than the selected threshold 𝛼 , which indicates
that there is no significant difference between the two CDFs.

Results are presented in Table 3: In all cases, the p-value remains
above the significance level (𝛼), leading to acceptance of 𝐻0. In
Fig. 4 we plot with lines our approximation, and with markers the
exhaustive simulations, for 𝑐 = 3 servers at the edge and cloud.
Our CDF approximation of the sojourn time that is obtained in the
𝑀/𝐺/𝑘 simulations, regardless of the load of the system, is both
tight and conservative. We observe similar results for 𝑐 = 5 and
𝑐 = 10 in the system, but due to space limitations we omit them.

C
D

F 
w

it
h
 3

 C
P
U

s

Sojourn time [ms]

ρ=0.2
ρ=0.4

ρ=0.6
ρ=0.8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100  120  140  160  180  200

0.999990

0.999992

0.999994

0.999996

0.999998

1.000000

 50  100  150  200  250

Take-away: Our ap-
proximation is tight
& conservative regard-
less of the load 𝜌 (col-
ors) and number of
servers.

Figure 4: Sojourn time of Proposition 3 approximation (lines)
and𝑀/𝐺/𝑐 simulations (markers).

Reliability Load (Erlang)
Requirement I=1 I=2 I=4 I=8 I=16 I=32

100ms, 99.999% (3,3) (4,4) (6,6) (10,10) (18,18) (34,34)
100ms, 99.9% (2,2) (3,3) (5,5) (9,9) (18,17) (34,34)
50ms, 99.9% (3,3) (5,5) (7,7) (11,11) (20,19) (36,35)
50ms, 99% (3,3) (4,4) (6,6) (10,10) (18,18) (35,34)

Table 4: Comparison (𝑘1, 𝑘2) of the minimum CPUs required
by Proposition 3 (𝑘1) and M/G/k simulations (𝑘2) to meet V2N
service requirements upon different loads 𝐼 .

The impact of the sojourn time approximation. We evaluate
the effectiveness of our approximation of the sojourn time of M/G/k
in Prop. 3, vs. the actual sojourn time of the M/G/k, in terms of its
results when solving Problem 1. In Table 4 we present the results
of different combinations of URLLC requirements expressed in
terms of the maximum accepted delay 𝑇 and the reliability 𝑃𝐺 [7]
(rows), and different traffic intensities captured as 𝐼 = 𝜆𝑠 , where
𝑠 the average service time of tasks (columns). Each pair (𝑘1, 𝑘2)
captures the minimum number of servers needed to guarantee the
corresponding requirements in the first row. The results of Table 4
suggest that the optimal solution of the V2N-COCA problem found
using ourM/G/k approximation of Prop. 3 requires the same number
of CPUs as when exhaustive M/G/k simulations are used, i.e., when
having perfect knowledge of the sojourn times in advance. In only
a few cases it is conservative, overestimating the number of CPUs
to activate by one, which in all cases results in difference ∼1%
compared to the oracle. These cases (marked in the table with bold)
have high load, high reliability requirement, and low target delay.

From the above, we conclude that using the approximation in
Proposition 3 leads to near-optimal results and, given that is a closed
formula, opens the way for the design of our efficient solution.

6 OUR JOINT OFFLOADING AND CPU
ACTIVATION ALGORITHM

We now design BiQui [4]: an efficient BInary search solution over
the QueUIng theory approximation of Prop. 3 for solving the V2N-
COCA Problem. Then we analyse its correctness, computational
complexity, and prove its asymptotic optimality.

6.1 Algorithm Design and Intuitive Explanation
BiQui exploits the properties of the objective function (Prop. 1) and
of the feasible set (Prop. 2), and relies on the closed-form approxi-
mation of the sojourn time of tasks in the system (Prop. 3). We now
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Algorithm 1 BiQui
Input: Granularity 𝑧𝑔𝑟𝑎𝑛 for partitioning offloading space, number

𝑉 of vehicles, target delay 𝑇 , reliability requirement 𝑃𝐺
Output: number 𝑥0 and 𝑦0 of CPUs to be activated at the edge and

the cloud, and offloading policy 𝑧0
1: Initialize: 𝑧0 = 1 and 𝑥0 = 0
2: Binary search on 𝑦 using our𝑀/𝐺/𝑘 approx. in eq. (9)

𝑦0 = argmin
𝑦=1,...,𝐶

{𝐾 (𝑉 , 𝑥0, 𝑦, 𝑧0) : P(𝐷𝑖 ≤ 𝑇 ) ≥ 𝑃𝐺 }

3: for z = 1, . . . , 1/𝑧𝑔𝑟𝑎𝑛 do
4: while (x,y,z) not feasible and 𝑥 ∈ {0, 1, . . . , 𝐸−1} do x=x+1
5: while (x,y-1,z) feasible and 𝑦 ∈ {1, . . . ,𝐶} do y=y-1
6: if 𝐾 (𝑉 , 𝑥, 𝑦, 𝑧 ) < 𝐾 (𝑉 , 𝑥0, 𝑦0, 𝑧0 ) then (𝑥0, 𝑦0, 𝑧0 ) = (𝑥, 𝑦, 𝑧 )
7: end for

present in detail BiQui’s steps, which are divided in three phases.
For each phase we provide a high-level rationale and intuition
behind it, and refer to the specific lines in Algorithm 1.

Phase 1: Initialization. (lines 1). Initialize offloading as 𝑧 = 1 and
number of edge CPU activation as 𝑥 = 0, motivated by the typically
lower prices of the cloud servers vs. those of the edge servers [34].
If the opposite holds, the initialization is inverted: 𝑧 = 0 and 𝑦 = 0.

Phase 2: Binary search.We perform a binary search in the num-
ber of available CPUs at the cloud (line 2), to find the minimum
number that should be activated to obtain a feasible solution, i.e.,
a solution that satisfies the reliability constraint. Binary search
ensures minimum computational complexity in the worst case.

Phase 3: walking down the feasibility region. We exploit Prop. 1,
i.e., the cost function monotonicity w.r.t. CPU activation decisions,
which implies that the minimum cost will be in this boundary.
Although offloading decisions 𝑧 are continuous, we sample for
a finite number of discretized values: over [0, 1] and in steps of
𝑧𝑔𝑟𝑎𝑛 ∈ (0, 1], i.e., with a granularity 𝑧𝑔𝑟𝑎𝑛 . In Sec. 6.2 we detail
the trade-off that emerges by this discretization choice, and prove
BiQui’s asymptotic optimality. For each of these 1/𝑧𝑔𝑟𝑎𝑛 values we
run a for loop (line 3), to: (i) increase the activated CPUs at the
edge until the reliability requirement is met (line 4), (ii) decrease the
activated CPUs at the cloud while the reliability requirement is met
(line 5). If the current configuration is better than the provisional
one, we update the provisional one (line 6).

6.2 Correctness, Computational complexity,
and Approximation properties

We now discuss BiQui’s correctness, computational complexity,
and we finally prove its asymptotic optimality.

Correctness: BiQui provides a correct (i.e., feasible) solution for
Problem 1. The reliability requirement imposed in eq. (1) is ensured
by Line 2. The upper and lower bounds on the available resources
are ensured in lines 4 and 5. The offloading decision 𝑧 is guaranteed
to lie with in [0, 1] because of the for-loop range in line 3.

Computational complexity. We examine the computational
complexity of each step of the algorithm, and then conclude to

BiQui’s total computational complexity. Phase 1 has a time com-
plexity of O(1) . Phase 2 has O(log𝐶) (line 22). Phase 3 is a for-
loop with 1/𝑧𝑔𝑟𝑎𝑛 iterations. Although lines 4-5 are two while-
loops nested within it, the total number of times that they will
run is bounded from the number 𝐸 and 𝐶 of max available servers
at the edge and at the cloud. The reason is that these lines in-
crease/decrease the number of used resources at the edge and the
cloud, respectively. For line 6, the complexity of the action to be
taken should the condition be positive is O(1), and it will be run
1/𝑧𝑔𝑟𝑎𝑛 times. Thus, in total, for Phase 3 we have O(𝐸) + O(𝐶) +
O(1/𝑧𝑔𝑟𝑎𝑛) = O(𝐸+𝐶+1/𝑧𝑔𝑟𝑎𝑛). That is, the total computational com-
plexity of BiQui equalsO(log𝐶+𝐶+𝐸+1/𝑧𝑔𝑟𝑎𝑛), i.e.,O(𝐶+𝐸+1/𝑧𝑔𝑟𝑎𝑛).

Asymptotic optimality. Let𝐾𝑂𝑃𝑇 (𝑉 , 𝑥∗, 𝑦∗, 𝑧∗) be the cost achi-
eved by the optimal solution of Problem 1 and 𝐾𝐵𝑖𝑄𝑢𝑖 (𝑉 , 𝑥,𝑦, 𝑧) be
that achieved by BiQui. The computational complexity of the opti-
mal solution is high, as it requires exhaustively searching the entire
solution space. By changing the granularity 𝑧𝑔𝑟𝑎𝑛 of partitioning
of the decision space for the offloading decisions 𝑧, we can create a
trade-off between the computational complexity of BiQui and how
much it approximates the optimum solution. It holds that:

Proposition 4. Given the CDF of the sojourn time of tasks
in the queuing system, BiQui is asymptotically optimal w.r.t.
the offloading decisions 𝑧. That is,

lim
𝑧𝑔𝑟𝑎𝑛→0

𝐾𝐵𝑖𝑄𝑢𝑖 (𝑉 , 𝑥,𝑦, 𝑧) = 𝐾𝑂𝑃𝑇 (𝑉 , 𝑥∗, 𝑦∗, 𝑧∗). (10)

The sojourn time CDF ensures that the reliability requirement
can be handled accordingly. In case of scarce approximation of the
sojourn time, both the optimal solution and BiQui will deviate from
the respective solutions under perfect approximations.

Proof. The CDF of the sojourn time will allow the reliability
requirement to be perfectly described, and thus the binary search
in line 2 of Alg. 1 to find the optimal number 𝑦 of CPUs to activate
at the cloud. The next phase that BiQui continues with is walking
down the feasibility region boundary. Since from Prop. 1 the objec-
tive function is monotone w.r.t. the CPU activation decisions, the
optimal CPU activation configurations will lie in the boundary w.r.t.
them. Combining this with the linearity of the feasibility region
boundary w.r.t. the offloading decision 𝑧 (third property in Prop. 2),
and considering 𝑧𝑔𝑟𝑎𝑛 → 0, we obtain the result. □

7 PERFORMANCE EVALUATION
We assess BiQui’s performance using real-world traffic traces, pric-
ing plans currently used in the market, and propagation delay
setups drawn from previous related work on the topic. We consider
reliability constraints imposed by 5G-Americas [7] for V2N.

7.1 Setting, Traces, and Benchmarks
Setting. In this section, unless otherwise specified, we consider

𝑧gran = 10−2 granularity, target delay 𝑇𝐺 = 100ms, and 𝑃𝐺 =
99.999 % reliability [7]. We consider propagation delays from real-
world providers [34]: edge Round Trip Time (RTT) 𝐷𝑒prop = 18.2ms
and cloud RTT𝐷𝑐prop = 22.8ms.We assume that the vehicular H.264
video flows are processed on AWS EC2 G4 instances, optimised for
intense video-processing, and with pricing the hourly cost of EC2
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Figure 6: Impact of varying server RTT. Edge RTT: 𝐷𝑒prop = 18.2ms. Cloud RTT: 𝐷𝑐prop = 22.8ms (top); and 𝐷𝑐prop = 49.1ms
(bottom). All RTTs are from [34]. Target delay: 𝑇 = 100ms. Reliability requirement: 𝑃𝐺 = 99.999%.

G4 [2]: 𝑐0𝑒 = 0.0052, 𝑐1𝑒 = 1.363 $/h. Similarly, we consider the EC2
G4 instances price in Regional premises as reference for the cloud
pricing, i.e., we take 𝑐0𝑐 = 0.0052, 𝑐1𝑐 = 0.94 $/h.

Real-world Traces. The traffic data [5], recorded by 6 road
probes in Torino, includes traffic flow measurements aggregated
over 5 minutes. Fig. 5a shows the geographical distribution, with
streets represented by points sized according to their maximum
traffic intensities. Fig. 5b depicts the traffic flows over the streets
for one entire day. The aggregated demand achieves peaks 𝜆 ≤
2.5 pkt/ms (Fig. 5b), and we thus consider demands 𝜆 within [0, 2.5].

Benchmarks. We compare BiQui performance against:
OPT: found through exhaustive search on (𝑥,𝑦, 𝑧). Although

inefficient by means of running time and not practical, it shows the
system’s limits and allows us to compare BiQui against them.

AVG: finds optimal decisions (𝑥,𝑦, 𝑧) ensuring that the total avg
delay of tasks remains below the delay constraint 𝑇 [15, 27].

KNG: uses Kingman law of congestion to approximate the aver-
age waiting time in an M/G/k system [14].

SNC: adaptation of [33] that uses Stochastic Network Calculus
(SNC), to capture the stochasticity of the service times for video
processing tasks. We resort to the affine arrival/service curves [8]
to bound the arrival/service excess/deficit.

OffAll: uses cloud as much as possible, then starts using edge.
LocAll: uses edge as much as possible, then starts using cloud.

7.2 Results
We evaluate BiQui against the benchmarks above by doing a sensi-
tivity analysis on the problem’s parameters, and over real traces.

The impact of varying RTTs. We consider high and low Round-
Trip-Times (RTTs) for cloud servers. Fig. 6 depicts normalized costs,
offloading decisions 𝑧, number of activated edge-cloud CPUs, vs. dif-
ferent load 𝜆. Our main observations and insights per scheme are:

OPT: The max. supported computing load is up to 2.5 pkt/ms for
low (Fig. 6a) and up to 0.75 pkt/ms for large (Fig. 6e) cloud RTTs.
High RTTs at some point lead the total delay to exceed the target
delay𝑇 , leading to infeasible solutions, as the reliability requirement
is not met anymore, thus indicating the system’s limits.
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𝜆 (pkt/ms) 𝑥 (CPU) 𝑦 (CPU) 𝑧 (%) 𝐾 ($/hour)
1 (0, 0) (31, 26) (100, 100) (2.71, 2.70)
1.5 (6, 0) (40, 36) (91, 100) (4.13, 3.99)
2.25 (–, 16) (–, 40) (–, 74) (–, 6.69)

Table 5: Comparison (𝑎1, 𝑎2) BiQui’s decisions 𝑥,𝑦, 𝑧 and ob-
tained cost 𝐾 under target delay 77ms (𝑎1) and 100ms (𝑎2),
for different load 𝜆. Reliability: 𝑃𝐺 = 99.999%, propagation
delays: 𝐷𝑒prop = 18.2, 𝐷𝑐prop = 22.8ms [34].

BiQui: it matches the costs and decisions taken by the OPT, for
both smaller and larger cloud RTTs. This happens for all the possible
computing loads except for those at the very high limit BiQui, i.e.,
for 𝜆 → 2.5 for low RTTs (Fig. 6a) and for 𝜆 → 0.75 for large RTTs
(Fig. 6b). However, the reason for this is the conservativeness of
the sojourn time approximation of Proposition 3 (discussed above).

AVG: it is infeasible for all RTTs. From Fig. 7, the 99.999% delay
experienced by the tasks processed at the edge or cloud exceed the
𝑇 = 100ms target delay. This is the main drawback of the existing
approaches in the literature, e.g., [15, 27], which fail to capture the
strict latency and reliability requirements of V2X services.

KNG: only finds solutions under small RTT and 𝜆 = 2.376 (see
Fig. 6a-d). This is due to the decreasing saw-tooth delay behaviour
(see Fig. 7). KNG turns out to be a loose and optimistic approxima-
tion of the 99.999% delay, and it reduces the error as 𝜆 increases. For
accommodating demands 𝜆 > 2.5, CPU setups 𝐶 > 40 are needed.

SNC: it appears too conservative. From Fig. 6a-d (low RTT), it
eats up all CPUs with loads 𝜆 ≤ 0.71, not finding feasible solutions
for higher loads. From Fig. 6e-h (high RTT), it never finds feasible
solutions. We conjecture that SNC provides rather loose bounds for
the reliability 𝑃𝐺 , hence pitfalls into resource over-provisioning.

OffAll: its behaviour highly depends on RTTs. From Figs. 6a-d
(low RTT) it matches OPT, as cloud is cheaper. However, in Figs. 6e-f
(high RTT), feasible solutions are not possible due to delay viola-
tions stemming from high RTTs.

LocAll: is an optimal approachwith large cloud RTT (as in Fig. 6e-
h), for the only feasible solution is to locally process all tasks at the
edge. Upon small cloud RTT (as in Fig. 6a-d), it leads to suboptimal
deployments because it does not use first cheap CPUs at the cloud.

The impact of the target delay, 𝑇 . We investigate on the
lower possible target delay that BiQui could handle, revealing its
potential, while being relevant for more stringent scenarios that
may be considered in future 6G applications. Table 5 compares
BiQui decisions under the ToD target delay (𝑇 = 100ms)[7], and
𝑇 = 77ms, upon different loads 𝜆. As intuitively expected, in order
to handle the tighter target delay, BiQui exploits the faster edge
resources starting from lower computing loads 𝜆 (despite their
higher costs). This consumes available resources earlier, and leads
to unfeasible solutions for 𝑇 = 77ms and load 𝜆 = 2.5 pkt/ms.

The impact of the granularity of the offloading decisions,
𝑧𝑔𝑟𝑎𝑛 . We use the same experimental setup as that for low cloud
RTT. Fig. 8 shows BiQui for 𝑧gran = {0.01, 0.1, 0.2, 0.3, 0.4} vs. vary-
ing computing load 𝜆. From Fig. 8b we observe that the offloading
decision remains 𝑧 = 1 when 𝜆 ∈ [0, 1.73], i.e. until then BiQui of-
floads the load to the cloud, irrespectively of the granularity 𝑧gran. In
Fig. 8, BiQui matches OPT for 𝑧gran = 0.01. For loads 𝜆 > 1.73, both

BiQui and OPT have consumed all the cloud CPUs, i.e., 𝑥 = 𝐶 = 40,
thus necessitating edge CPU usage, and reduce offloading (𝑧 < 1).
For instance, with 𝑧gran = 0.1, BiQui reduces offloading to 𝑧 = 0.9
after 𝜆 = 1.73, activating 𝑥 = 6 edge CPUs and reducing cloud
CPUs to 𝑦 = 37 (see Figs. 8e and 8d).

Fig. 8a highlights the cost deviation that BiQui experiences as we
lower the granularity for 𝜆 ∈ [1.65, 1.8]. This is due to the excess
of edge CPUs turned on, due to excessive drops in the offloading
𝑧 (see Fig. 8b). Nevertheless, BiQui gets closer to the optimal as
𝑧gran → 0, confirming numerically Prop. 4 in Sec. 6.2.

Varying the granularity of the offloading decisions impacts BiQui’s
runtime, ranging from 6.3 to 25ms for 𝑧gran = {0.4, 0.3, 0.2, 0.1, 0.05},
and 81ms and 119 ms for 𝑧gran = 0.01 and low and high RTTs. Con-
sidering the constant flow of video frames in ToD services, at most
only the first frame of the entire video flowmay not meet the 100ms
ToD requirement, and only when 𝑧𝑔𝑟𝑎𝑛 = 0.01 and high RTTs.

BiQui over a day. In Fig. 5c-d we plot an entire day, illustrating
the delay experienced by tasks, and the portion of tasks 𝑧 offloaded
by BiQui, whose 99, 999th delay percentile remains below the target
delay𝑇 = 100ms. Fig. 5c shows that the average task delay is half of
the 99.999th percentile, with increases during peak hours (∼8h and
∼18h). During rush hours, BiQui offloads tasks to the edge to relieve
cloud saturation, which is evident in the drop to 𝑧 = 0.75 in Fig 5d.
The cloud saturation causes delay spikes, especially from 15:00-
18:00 (Fig. 5c). Overall, BiQui effectively handles load fluctuations
during traffic rush hours by using edge resources when needed.

8 CONCLUSION
We introduce the V2N Computation Offloading and CPU Activa-
tion (V2N-COCA) problem, aiming at minimizing operational costs
(both monetary and energetic) while ensuring URLLC, by making
decisions related to task offloading and CPU activation between the
edge and the cloud. To overcome the non-existence of closed-form
expressions to model the URLLC requirement, we resort to queuing
theory expressions to approximate the service and waiting times of
tasks in edge/cloud servers. We thoroughly and rigorously validate
this approximation, in terms of both accuracy and effectiveness of
solving the V2N-COCA Problem. Based on its structural properties,
we design BiQui, a provably asymptotically optimal algorithm that
is also computationally efficient (linear w.r.t. number of servers).
Results show that BiQui outperforms the state of the art and meets
the stringent V2N service requirements, meeting the target delay
the 99.999% of the time. Future directions for research include ex-
ploring the performance of our approach in different contexts, such
as aiming at the delay minimisation, to validate our intuition that
BiQui will be an equally good solution for other cost functions.
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