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Abstract—The increasing complexity of cloud-native 6G net-
works necessitates intelligent resource management to optimize
scalability, energy efficiency, and service reliability. This pa-
per presents an AI-driven self-healing mechanism for dynamic
server activation within the a cloud-native system. The proposed
framework integrates three key frameworks: the Management
and Orchestration Framework (MOF) for policy-based network
service orchestration, the Cloud Continuum Framework (CCF)
for dynamic resource scaling, and the Artificial Intelligence and
Machine Learning Framework (AIMLF) for predictive analytics
and anomaly detection. By leveraging AI models, the system
continuously monitors workload variations, forecasts resource
demand, and dynamically scales computing resources, ensuring
optimal energy efficiency and SLA compliance. The proposed
self-healing workflow enables proactive server activation and de-
activation, addressing load bursts and underutilization scenarios.
Numerical evaluations, including real-world traffic data analysis,
demonstrate that our approach significantly improves power
consumption, load balancing, and resource utilization compared
to traditional static resource allocation methods.

Index Terms—6G network, dynamic server activation, energy
efficiency, load forecasting, proactive scaling, resource allocation,
resource scaling, SLA enforcement

I. INTRODUCTION

A. Cloud-native 6G Networks

Cloud-native 6G networks represent the next evolution in
mobile communication, built on scalable, software-defined ar-
chitectures that seamlessly integrate cloud, edge, and network
services [1]. Unlike previous generations, 6G networks are
designed to be highly flexible, self-healing, driven by Artifi-
cial Intelligence (AI), and energy efficient, enabling adaptive
service provisioning in real time.

In principle, a 6G system comprises four primary frame-
works that collectively manage network resources: (i) Manage-
ment and Orchestration Framework (MOF), which is respon-
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European Union’s HORIZON-JU-SNS-2023 programme under grant agree-
ment No 101139073 (www.6g-cloud.eu).

sible for high-level policy enforcement and network service
orchestration, interacting with AI-driven modules to optimize
service availability and energy efficiency; (ii) Cloud Contin-
uum Framework (CCF), which ensures seamless integration
between cloud and edge computing resources, dynamically
managing computational workloads, handling real-time re-
source allocation and scaling based on AI-driven predictions;
(iii) Artificial Intelligence and Machine Learning Framework
(AIMLF) [2], which provides AI-based analytics, anomaly
detection, and predictive modeling to optimize performance,
while also continuously refining Machine Learning (ML) mod-
els for adaptive network optimization [3]; (iv) Radio Access
Network/Core Network (RAN/CN) Services (NSs), which
comprises RAN and CN functions, providing the foundational
virtualized connectivity infrastructure, integrating with the
other frameworks to ensure a complete service provision with
optimized traffic handling and robust network performance.
These four frameworks are deployed on virtualized cloud or
edge resources and work in tandem to create an intelligent,
self-healing 6G network that autonomously adapts to varying
traffic patterns, minimizes energy consumption, and enhances
overall service reliability.

B. AI-aided Self-healing of Computing Resources

In Cloud-native 6G networks, computing resources must dy-
namically adapt to fluctuating traffic demands while ensuring
low latency and energy efficiency. Traditional static resource
management approaches often lead to over-provisioning, un-
derutilization, and performance bottlenecks due to their in-
ability to anticipate workload variations. Self-healing mecha-
nisms [4] address this challenge by autonomously detecting
anomalies, predicting future demand, and applying real-time
corrective actions to restore optimal network conditions. Given
the complexity and scale of 6G infrastructures, AI-driven
decision-making is essential to enable real-time data analytics,
pattern recognition, and adaptive optimization [5]. ML models
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can continuously analyze traffic loads, predict performance
degradations, and proactively adjust server activations, work-
load balancing, and anomaly mitigation strategies.

C. Related Work

Self-healing and proactive resource management techniques
have been extensively explored in dynamic computing en-
vironments, including fault tolerance, load balancing, and
energy efficiency via AI-driven and rule-based approaches.
First, Lee et al. [6] proposed a collaborative resource alloca-
tion mechanism for self-healing in self-organizing networks,
where network nodes dynamically adjust resource allocation
to compensate for failures and restore service availability.
Mashaly and Kühn [7] explored a load balancing strategy
for cloud-based content delivery networks via adaptive server
(de-)activation, dynamically adjusting active servers based on
real-time traffic conditions. Later, Kuehn and Mashaly [8]
extended this work, proposing an automatic energy efficiency
management framework that enables data centers to activate
or deactivate servers based on load-dependent sleep modes.

Beyond static threshold-based management, AI-driven ap-
proaches have significantly enhanced predictive self-healing.
Ghahremani et al. [9] introduced a utility-driven self-healing
framework for large-scale adaptive architectures through re-
inforcement learning (RL). In the cloud-edge continuum, Gi-
annopoulos et al. [10], [11] proposed a distributed deep RL
for delay-aware computation offloading, optimizing workload
distribution between cloud and edge servers based on real-
time traffic and latency constraints. Also, Schuler et al. [12]
further explored RL-based auto-scaling in serverless comput-
ing, showcasing how AI-driven adaptive resource allocation
outperforms traditional reactive methods in handling work-
load fluctuations. Finally, self-healing mechanisms have been
considered for Mission-Critical Service (MCS) provisioning,
where AI-assisted decisions have been used to preemptively
scale up the computational resources of MCS in the presence
of traffic bursts [13], [14].

D. Paper Outline and Contributions

This paper presents an end-to-end self-healing control loop
combining real-time monitoring, AI inference, and Service
Level Agreement (SLA)-driven resource orchestration. A com-
prehensive AI-driven framework for self-healing resource
management is also proposed in the frame of Cloud-native
6G networks.

The key contributions of this work include:
• A closed-loop AI-driven control system for real-time

server activation and deactivation is outlined, following
a load-aware decision-making process. Specifically, we
propose a general-purpose architectural workflow of AI-
driven CCF optimization under SLA demands (policies)
and dynamic compute traffic.

• Collaborative interactions among different 6G frame-
works, including MOF, CCF, and AIMLF, are highlighted
to enable self-configurable and automatic resource scal-
ing.

• A comparative evaluation of static (or reactive), predictive
(or proactive), and ML-aided adaptive threshold-based
resource allocation strategies is presented. To this end,
we conducted a quantitative and comparative evaluation
of ML impact on the number of active servers and the
system’s energy efficiency.

• A proof-of-concept demonstration of significant power
savings and optimized resource utilization through AI-
enhanced decision-making is provided, considering real
compute traffic patterns.

II. ARCHITECTURE MODEL OVERVIEW

A. High-level 6G Architecture

The high-level architecture of the Cloud-native 6G (6G-
Cloud) system integrates multiple frameworks and functional
components to enable self-healing and energy-efficient NS
manageability. The system is structured around three pri-
mary frameworks, namely the MOF, CCF and AIMLF, all
of which interact seamlessly with the 6G Core and RAN
NSs to ensure optimal performance. A single NS at the
CCF level represents a logical grouping of resources, called
Resource Partition (ResP), and functionalities designed to
provide a specific network capability. These resources can
span across multiple cloud/edge servers or data centers and
are orchestrated dynamically based on demand, SLAs, and
system requirements. An NS can consist of a set of virtualized
network functions (VNFs) that run on one or many servers.
AIMLF functionalities are considered as overlay functions
extending the capabilities of the CCF or MOF modules.
Their instantiation can be done after interaction with AIMLF
Orchestrator.

The general architecture is depicted in Fig. 1, while the key
functionality of the three frameworks is outlined as follows.

1) Management and Orchestration Framework (MOF):
This framework handles policy-based orchestration and
SLA enforcement. It consists of several subcomponents,
such as the NS Directors, Service Orchestrator (SO),
which manages a single NS, and the Master Service
Orchestrator (MSO), which oversee the dynamic man-
agement of NSs and resource provisioning. It interacts
with both AIMLF and CCF to coordinate resource scal-
ing actions. User or system administrator requirements
are collected through the Global Operational Support
System (G-OSS) or Global Business Support System
(G-BSS).

2) Cloud Continuum (CCF): This framework aggregates
and manages all types of resources (far/near edge, cen-
tral cloud) across a multi-provider environment, while it
is responsible for real-time resource monitoring and al-
location across cloud and edge servers. It includes Auto-
nomic CCF Operations, a Resource Database (DB), and
multiple Resource Orchestrators (ROs) that dynamically
assign resources, potentially based on AI predictions.

3) Artificial Intelligence and Machine Learning Frame-
work (AIMLF): This framework is responsible for
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Fig. 1. High-level architecture of the multi-framework 6G-Cloud system.

AI-driven decision-making processes by providing AI
functions (AIFs) and pipelines, including model train-
ing/inference, performance monitoring, and predictive
analytics. It includes components such as the AI/ML
Learning Module, Model Storage, Performance Moni-
toring, Network Digital Twin (NDT), and Model Serving
to allow for deployment of AI workloads.

B. Role of Key Components

Although all the architectural components are required to
form a complete 6G-Cloud system, this section outlines the
role of key components engaged in the proposed control loop.
These interconnected components form a closed-loop system
where AI enhances adaptability, self-healing, and energy-
efficient operations across the 6G-Cloud infrastructure.

First, in the CCF level, the critical components are: (i) Re-
source Database which collects real-time metrics, including
energy consumption, resource utilization (e.g. CPU percent-
age utilization), and workload distribution from cloud/edge
servers; (ii) Resource Orchestrator which allocates resources
dynamically to NSs (e.g. server de-activation) and enforces
reconfigurations based on AI model outputs; (iii) Autonomic
CCF Operations which is considered to host the training or
inference modules (e.g. CPU usage prediction models) using
historical or real-time data from resource partitions. Regarding
the AIMLF, the following key building blocks are identified:
(i) AI/ML Training Module which trains or continuously
refines prediction models using historic or new data from
CCF Resource Database; (ii) AI/ML Models Database which
stores trained models (e.g. CPU forecasting model) ready for

deployment; (iii) AI Performance Monitoring which moni-
tors the accuracy of models under training or the performance
of running models. In the MOF level, key components include:
(i) Global OSS which provides policy-based configurations
such as service availability or energy efficiency, and interacts
with external stakeholders; (ii) Service Orchestrator (SO)
which orchestrates NS deployment and SLA policy enforce-
ment by identifying threshold exceedance, and interfaces with
the CCF to ensure resource availability; (iv) Anomaly Detec-
tor which resides inside SO and is responsible for detecting
workload anomalies based on thresholds or predictive outputs
from AI models.

III. AI-DRIVEN DYNAMIC SERVER ACTIVATION

In a nutshell, the proposed end-to-end resource allocation
loop is illustrated in Fig. 2, where different coloring is used to
notify the functionality per framework. Evidently, the process
starts by monitoring several metrics from resource partitions.
These VNF compute metrics (e.g., CPU utilization) exhibit
temporal variations due to the dynamic nature of the underly-
ing cellular traffic data. Then, a self-healing loop uses these
data to initially train ML models based on historical datasets,
whereas during the inference phase, real-time samples are fed
in the trained ML model to predict future values of the servers’
load. Then, according to SLA or policy-based thresholds set
via the G-OSS, we perform prediction-based checks to detect
potential violations of the existing SLA policies and identify
impending anomalies in the NSs (e.g., the overall load of an
NS exceeds a predefined limit). To ensure preemptive resource
scaling (e.g., adding more computational power to a certain
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Fig. 2. End-to-end resource allocation loop for self-healing actions encom-
passing 6G-Cloud frameworks.

NS), corrective actions are then performed by the ROs to
guarantee adaptation to the upcoming compute traffic demands
dynamically.

A. Resource Allocation Workflow

To concretely describe the proposed scenario workflow,
Fig. 3 shows the architecture system model, isolating the
6G-Cloud components of interest. The physical infrastructure
layer includes the user devices served by radio units, and
the edge/cloud servers that host the VNFs of an NS. The
resources marked in green constitute a resource partition for
NS 1, whereas other resource partitions for other NSs may
also be considered and are shown in red. A monitoring agent
(MA) software component is deployed in each edge/cloud
server, collecting timeseries metrics in the form of Resource
Metrics (RMs) report. The CCF layer manages the physical
infrastructure through the ROs. The AIMLF blocks shown in
blue are overlaid in the Autonomic CCF operations, which
means that they are directly deployed in the CCF. Finally,
the MOF layer includes the modules responsible for the NS
orchestration, as well as the SLA policy enforcement. The
latter includes the identification of server overload to notify
the RO for further scaling corrections.

Considering a single NS and its associated ResP, the pro-
posed resource allocation workflow is unfolded as follows:

Step 1: The first step is to collect the timeseries of the
CPU utilization metric associated with the ResP of NS 1. The
collected data are stored in the Resource Database of the CCF.
To ensure consistency, the latter tags the time-series dataset
with contextual information such as server type, and location.

Step 2: The timeseries historical dataset is utilized to
train an ML model that, based on a history lookback win-
dow, provides forecasts of the total CPU utilization of NS
1. The training process is performed offline in the AI/ML
learning module of the AIMLF that either is instantiated
in the Autonomic CCF operations or is located in a cental
server. During the training phase, the AI/ML learning module
subscribes through the RO to the Resource Database of the
CCF in order to gather the training data. This is achieved by
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Fig. 3. Step-by-step procedure for dynamic server activation within 6G-Cloud
system.

obtaining the configuration parameters from the Data Manager
that specifies the input/output of the AI/ML nodes. Then, the
training pipeline commences in the AI/ML Learning module,
including the exact labeling of the data, the feature extraction
of the dataset, as well as the fine-tuning of the ML model
parameters. The output of this process is the trained and fine-
tuned ML model for CPU utilization forecasting, which is sent
and stored to the AI/ML Models Database.

Step 3: The trained ML model is used for inference using
real-time data from the Resource Database, acknowledging the
predicted CPU utilization values in the MOF’s SO.

Step 4: Predictions are analyzed by the MOF’s Anomaly
Detector component to identify resource partitions with poten-
tial CPU overload. Anomaly thresholds are defined by SLAs
or policies provided by the Global OSS.

Step 5: If CPU overload or anomaly (e.g. SLA violation)
is identified by SOs, then Action Taker performs corrective
actions, including dynamic scaling. This means that resources
are scaled up/down in NSs by adding a new server (i.e. Server
Activation) or putting into low-power states (or deactivating)
temporarily the underutilized servers (i.e. Server Deactivation).

Step 6: Input and output (i.e. model predictions) data
are gathered by the Performance Monitoring (PMon) Client
module inside Autonomic CCF Operations and are sent to the
Performance Monitoring Server (inside AIMLF) together with
the actually observed output values. PMon Server provides
performance data (i.e. error between actual and predicted
values) and initiates model retraining upon model performance
degradation.

Step 7: Training data is continuously gathered from the
Resource Database in the form of RMs reports, and, peri-
odically, are fed back into the AI/ML Learning Module. At
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predefined regular periods, models are retrained to adapt to
changing workload patterns and environmental conditions. In
this sense, AIMLF ensures that the AI models remain accurate
and effective over time by saving their most recently trained
versions in the AIMLF Models Database.

This seven-step workflow is continuously repeated during
the real-time network operation, ensuring flexible, proactive,
and up-to-date scaling corrections based on AI-assisted deci-
sions.

B. Conditional Anomaly Detection Methods

In this section, we present different methods considered for
anomaly detection, as part of Step 4 in Fig. 3. To trigger
a corrective action, we employ three different approaches,
each with increasing sophistication: (i) Reactive (Without
ML): This is a straightforward method where a new server
is activated once CPU utilization reaches a fixed threshold.
However, it lacks adaptability to dynamic traffic patterns.
Assuming a fixed load threshold C, a new server is added at
time t+1 when L(t) > C, where L(t) is the CPU utilization
at time slot t; (ii) Proactive (Fixed Threshold): This method
still uses a predefined threshold but integrates AI predictions
through an LSTM model, offering better anticipation of CPU
usage spikes. This is done by comparing the load threshold
against the model predictions. Formally, a new server is added
at time t+1 when L(t) ≤ C and L̂(t) > C, where L̂(t) is the
CPU utilization prediction provided at time slot t concerning
the upcoming CPU at time slot t+1; (iii) Proactive (Adaptive
Threshold): This method dynamically adjusts the anomaly
threshold based on a moving average of predicted CPU usage.
The adaptive threshold is updated at each time step as follows.
The threshold T (t) is computed using an exponential moving
average T (t) = 0.9 × T (t − 1) + 0.1 × L̂(t), where L̂(t)
represents the current predicted load. A new server is activated
when L̂(t) > T (t), and deactivated when L̂(t) < T (t).

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed re-
source allocation loop against three different methods for
anomaly detection, as presented in Section III-B. We employ
dynamic server (de-)activation under fluctuating compute traf-
fic at the NS servers. The AI models are trained using real-
world traffic flow datasets from Torino city. These datasets
capture variations in network traffic, enabling our system to
learn effective scaling policies. The dataset consists of traffic
flow measurements aggregated over 5-minute intervals from
various streets in Torino, spanning several months. These traf-
fic flows generate tasks that require CPU resources (measured
as a percentage of usage). In our experiments, we use six-
months of data from Corso Agnelli, and one-week of data for
testing. Note that this dataset has been extensively used in
previous works [15].

Regarding the load thresholds, we use a subset of values
defined in [16]. Specifically, we adopt a conservative approach
by activating a new server when the current traffic load exceeds
20% of the capacity of the server.
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Fig. 4. Actual versus predicted curves of CPU usage considering 1000
inference steps. MSE between red and dashed blue line is below 10−3.

Upon extensive simulations with different hyperparameters,
we select a Long Short Term Memory Network (LSTM) as
the best CPU forecasting model. The optimal hyperparameter
configuration of the LSTM was the following: batch size =
16 (number of samples that are fed at each training step),
lookback window = 16 (number of history samples used as
input), training epochs = 100 (number of times that the whole
dataset was fed for training), learning rate = 0.0001 (affects the
backpropagation), hidden neurons per layer = 100, deepness =
5 (number of hidden layers). The mean squared error (MSE)
was also used as the loss function, whereas at time instance t,
the prediction refers to the CPU utilization at t+5 minutes. To
illustrate the effectiveness of the trained LSTM in predicting
the traffic patterns, Fig. 4 shows the actual and predicted
curves considering 1000 inference steps from the testing set.
Evidently, the LSTM is capable of accurately predict the actual
CPU usage values (MSE below 10−3).

Fig. 5 illustrates the number of active servers over 1000
inference steps for the three anomaly detection methods. In
the reactive and the proactive approaches with fixed threshold,
we observe similar behavior. This is because the predictions
closely align with the actual data, and both approaches employ
the same fixed threshold. In contrast, the proactive approach
with adaptive threshold results in a significant reduction in the
number of active servers. This occurs because the threshold
dynamically adjusts based on the current traffic pattern, al-
lowing for a more flexible decision-making process regarding
server activation and deactivation, while preventing abrupt
changes.

Regarding the power consumption model, we assume that
an active server consumes a fixed amount of power, meaning
that each server activation incurs a specific power cost. In our
experiments, we base our power consumption model on real-
world measurements from a Power Consumption Database
(see https://www.tpcdb.com/), considering Intel NUC6i7KYK
servers. Fig. 6 illustrates the mean power consumption for the
three approaches. As expected, the proactive approach with
adaptive threshold achieves significant power savings, as it
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maintains a lower number of active servers. This demonstrates
that dynamically adjusting the threshold can lead to significant
reductions in power consumption.

V. CONCLUSION AND FUTURE WORK

This paper presents an AI-driven self-healing framework
for energy-efficient dynamic server activation in 6G-Cloud
networks. The approach integrates real-time monitoring, AI-
driven workload forecasting, and adaptive anomaly detection
to optimize cloud/edge resource allocation.

Future directions of the present work include:
1) Large-Scale Implementation and Real-World Vali-

dation: Deploying the proposed AI-driven self-healing
CCF system in large-scale real-world network envi-
ronments. This will include testing in multi-operator
settings to evaluate its robustness under varying network
conditions.

2) Advanced Learning and Optimization Techniques:
Implementing other AI techniques to enhance the
decision-making abilities. Federated Learning (FL) and
Transfer Learning (TL) can be studied to enable decen-
tralized training across multiple network environments.

3) Considering Energy Consumption: Instead of collect-
ing CPU usage metrics, other indices of compute load
such as energy consumption can be also evaluated.
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