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Abstract—The evolution of cloud computing towards a cloud
continuum, including cloud, edge, and far-edge resources, is
revolutionizing the deployment, management, and orchestration
of Network Services (NSs) and applications. Traditional, cen-
tralized orchestration approaches are increasingly inadequate
for handling the complexity, scale, and dynamic nature of this
continuum. In this paper, we present a data-driven approach
for AI-powered service orchestration based on the European
6G-CLOUD project. Specifically, we introduce the Decentral-
ized Service Orchestrator (DSO) framework, an AI-powered,
decentralized orchestration model that leverages the capabilities
of the Artificial Intelligence and Machine Learning Framework
(AI/MLF) to enable intelligent, autonomous, and scalable service
lifecycle management across heterogeneous environments. Key
contributions include the detailed architecture of the DSO, its
workflows, and its integration with the Cloud Continuum and
with an AI/MLF that manage the AI lifecycle, enabling models
provision to the different components. By enabling decentralized
AI-driven decision-making, this framework enhances service
reliability, scalability, operational efficiency, and innovation ac-
celeration, paving the way for next-generation cloud continuum
orchestration.

Index Terms—6G, Cloud Continuum, Service Orchestration,
Artificial Intelligence

I. INTRODUCTION

The evolution of cloud computing towards a cloud contin-
uum, spanning central cloud, edge, and far-edge resources, is
transforming the way network services (NSs) and applications
are deployed, managed, and orchestrated. In this context,
orchestration has emerged as a key enabler to dynamically al-
locate resources, automate service provisioning, and optimize
performance across distributed infrastructures. Specifically,
service orchestration refers to the automated coordination and
management of computing, networking, and storage resources,
with a particular focus on scaling resources to ensure seamless
service delivery. However, traditional centralized orchestration
approaches [1] struggle to handle the complexity, scale, and
dynamic nature of the cloud continuum, necessitating a dis-
tributed management and orchestration framework [2] capable
of adapting to real-time changes and optimizing resource
utilization, especially when orchestration is AI-powered such
as [3]–[5].

To address these challenges, modern orchestration frame-
works must enable scalable, flexible, and autonomous ser-
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Fig. 1. High-level view of the 6G-CLOUD architecture, including the Man-
agement and Orchestration Framework (MOF), Cloud Continuum Framework
(CCF) and Artificial Intelligence & Machine Learning Framework (AIMLF)
which support different domains (e.g., RAN, Core and Edge)

vice management across heterogeneous and distributed envi-
ronments. A distributed model—enhanced by AI and data-
driven automation—supports intelligent lifecycle management
of network services (NSs), leveraging real-time monitoring,
predictive analytics, and intent-based networking to improve
reliability, fault tolerance, and efficiency [6]. However, orches-
trating services across the cloud continuum faces significant
challenges, including resource fragmentation, complex work-
load balancing, interoperability issues, and the need for real-
time decision-making to handle dynamic conditions and ensure
effective service delivery [7], [8].

A fundamental shift towards data-driven orchestration is
key to overcoming these challenges. Traditional rule-based
orchestration mechanisms, which rely on static policies [1],
[9], are being replaced by AI/ML-driven approaches that
continuously learn from operational data to optimize service
performance. The Artificial Intelligence/Machine Learning
Framework (AIMLF) is a key component in the transforma-
tion, providing a complete framework for models to be gener-
ated and trained from data exposed by the cloud continuum.
This enables a continuous training of models that are available
for the orchestration entities toward achieving an efiicient and
effective operation.

On the other hand, one of the primary advantages of an
orchestrable infrastructure is the ability to offer Orchestration
as a Service (OaaS) [10], opening orchestration to third-
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Fig. 2. Architectural building blocks of the MOF Architecture.

party providers, enabling the ability to request orchestration
functions as needed and allowing the presence of orchestration
marketplaces where specialized orchestration solutions will be
available for the different frameworks of the architecture. This
approach brings several benefits, including enhanced flexibil-
ity, scalability, fault tolerance, NS-customised orchestration
and accelerated innovation.

Additionally, the decoupling of resource and service or
chestration minimizes the impact of failures, ensuring greater
resilience in distributed environments because failures in one
layer do not directly propagate to the other. For example,
if a resource (e.g., a server or network link) fails, the ser
vice orchestration layer can dynamically adapt by reassigning
workloads to available resources without disrupting the en-
tire system. The Management and Orchestration Framework
(MOF) illustrated in Fig. 1 implements the Service Orches-
trators following a per-Network Service (NS) approach and
enabling an effective and isolated operation. Section III further
extend the description of the funcional blocks involved in this
process.The architecture also highlights the role of the AIMLF
and Cloud Continuum (CC) in facilitating AI-driven decision-
making and real-time resource adaptation, which are critical
for achieving the flexibility and resilience required for OaaS in
6G networks. The architecture also highlights the role of the
AIMLF and CCF in facilitating AI-driven decision-making and
real-time resource adaptation, which are critical for achieving
the flexibility and resilience required for OaaS in 6G networks.

In this paper, we present data-driven approaches to orches-
tration in the cloud continuum, with a focus on defining the
DSO, detailing its workflows, and presenting its interactions
with other architectural components. In a nutshell, the main
contributions of the paper are as follows:

• We present the DSO as a key component for intelligent,
autonomous, and scalable service orchestration across
heterogeneous cloud environments. We describe its ar-
chitecture, workflows, and integration with the Artificial

Intelligence/Machine Learning Framework (AIMLF).
• The proposed framework leverages AI/ML models to en-

able real-time decision-making, anomaly detection, pre-
dictive scaling, and fault management, enhancing service
reliability, operational efficiency, and adaptability in the
cloud continuum.

• To validate the workflows of the framework, we present
a use case where we implement an AI-driven self-healing
mechanism for latency-aware Virtual Network Function
(VNF) scaling. This use case demonstrates how real-time
telemetry, predictive analytics, and automated decision-
making within the DSO can proactively detect and miti-
gate potential SLA violations.

• We explore AI-driven optimization in decentralized ser-
vice orchestration, emphasizing its benefits for real-
time decision-making, scalability, and fault tolerance.
We introduce how advanced knowledge-sharing mech-
anisms—such as Federated Learning, Reinforce ment
Learning, and Graph Neural Networks that enable secure
collaboration among decentralized orchestrators. These
techniques enhance localised intelligence and facilitate
system-wide adaptability, addressing challenges like pri-
vacy, interoperability, and dynamic model management
in heterogeneous environments.

The rest of the paper is structured as follows. In Section II,
we present some of the challenges and requirements for data-
driven service orchestration. In Section III, we introduce the
Management and Orchestration Framework (MOF), along with
the DSO and its key workflows. Additionally, we present
a use case to illustrate its application. In Section IV, we
provide the benefits of DSO for AI-enabled SO together with
knowledge-sharing techniques and different challenges still to
be addressed within this field. Finally, in Section V, we present
some concluding remarks.
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II. CHALLENGES AND KEY REQUIREMENTS FOR
ORCHESTRABLE DATA-DRIVEN SERVICE ORCHESTRATORS

One of the main challenges in orchestration frameworks is
separating service orchestration from resource orchestration.
Service orchestration focuses on managing workflows and
business processes, while resource orchestration handles the
allocation of computing and network resources. This separa-
tion improves scalability and flexibility, especially in dynamic
environments like the cloud, where demands frequently shift.
It allows each layer to adapt independently—for example,
resources can be scaled up or down based on current needs,
while services continue functioning smoothly.

Separating these two layers also enhances fault isolation
and system resilience. In monolithic systems, failures in one
part can cascade into others, causing widespread issues. With
decoupling, faults are confined to their own domain —so a
problem with resource allocation doesn’t necessarily affect
service operations. This leads to more robust and reliable
orchestration systems.

In addition to improving fault tolerance, this separation
enables faster and more flexible innovation. Since the layers
can evolve independently, organizations can update or enhance
one without disrupting the other. For example, integrating
AI into resource orchestration can be done without altering
service orchestration, allowing for quicker experimentation
and adaptation in fast-changing tech environments.

III. DECENTRALIZED SERVICE ORCHESTRATION

A. Management and Orchestration Framework: the 6G Cloud
vision

The Management and Orchestration Framework (MOF) in
the 6G-Cloud project is a key architectural enabler designed
to provide scalable, distributed and intelligent orchestration
across the cloud continuum. This need for a more advanced
orchestration model arises because current NSs are increas-
ingly complex, and a single SO may struggle to efficiently
manage distributed workloads, inter-domain dependencies, and
dynamic scaling requirements. For example, a network service
composed by a 5G virtual network may benefit from using
two service orchestrators where one can be dedicated to
the core network, which is instantiated in a multi-domain
architecture and the other to the RAN, which follows an Open
RAN architecture. As a result, the decentralized orchestration
approach comes into the scene to enable a more granular and
adaptive approach. The key features are the following:

• Service and Resource Separation: The MOF imple-
ments a programmable Orchestration-as-a-Service (OaaS)
model where service and resource orchestration are split
into independent operations. This enables dynamic re-
source allocation for specific NSs while reducing the
operational overhead, and, at the same time, service
orchestration can be decentralized and orchestrable.

• AI-Driven Orchestration and Automation: The MOF
integrates AI/ML-based intelligence to support intelligent

resource allocation, anomaly detection, fault management
and real-time optimizations over the NSs.

The main building blocks start with the Master Service Or-
chestrator (MSO), which oversees the global orchestration pro-
cess and initializes the creation process of network servicess.
Then, the Network Service Director (NSDir) is designed to
manage a specific NS, comprising the Service Orchestrators
(SOs) within a controlled logical component (Decentralized
Service Orchestrator) to perform pure management operations
and real-time optimizations through AI-assisted models. After
that, the Assets Repository (ARep) stores Network Functions
(NFs) and NS templates for efficient deployment and lifecycle
management, and the NS-OSS/BSS are specific instances of
operations and business interfaces specifically created for each
NS. In a more general way, the MOF also includes instances
for the OSS/BSS that operate at framework level, exposing
general operations that are not limited by the characteristics
of an NS.

B. Architectural design of a DSO

To provide efficient management of complex NSs under
distributed and heterogeneous workloads, the NSDir adopts a
decentralized AI-powered approach for service orchestration
where one or more SOs will be in charge of orchestrating the
NS or a subset of elements of the NS as depicted in Figure 2.

The MSO manages the global orchestration vision, and
hence, the different SOs conforming to the DSO are suscep-
tible to receiving orchestration directives. The Orchestration
BUS included in the figure (dark-green lines) enables direct
communication among the MSO and DSO so that global
orchestration can effectively be applied, directives that may
involve the deployment or replacement of SOs dedicated to
specific NSs (or elements within the NSs). Then, for the DSO
to effectively orchestrate the NSs, it is also connected to the
CCF Communication BUS (green lines), which acts as the
endpoint for communicating with the NSs. Finally, the AIMLF
also contributes to improving the overall performance of both
NSs and the Cloud Continuum by providing both the MSO
and the NSDir with the appropriate trained AI/ML models
with different purposes. For instance, the AIMLF is connected
to the SO and the CCF via the CCF Communication Bus
(green lines) and the AIMLF Communication Bus (blue lines).
The AIMLF supports end-to-end model lifecycle management
in line with MLOps principles [11], following a structured
pipeline that includes: (i) Data Adaptation: preprocessing
and transforming real-time and batch data for training; (ii)
Model Training: using diverse ML techniques in scalable,
distributed setups; (iii) Testing and Validation: evaluating
model performance and generalization; and (iv) Deployment:
using containerized/serverless environments with continuous
monitoring for drift and retraining.

While providing models is the most basic function of the
AIMLF, the framework is designed to support the full life-
cycle management of AI functions by enabling the exchange
of orchestration information and AI/ML models through its
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integration with the MSO, NSDir, and DSO via a commu-
nication bus. Building on this, the OaaS paradigm enhances
the decentralized orchestration approach by allowing the DSO
to deliver dynamic, programmable orchestration across het-
erogeneous environments, with the NSDir offering service-
agnostic orchestration functionalities (SOs) decoupled from
specific network services.

C. Decentralized Intelligent Orchestration Model

As stated previously, one of the key advantages of the
proposed orchestration approach is the OaaS combined with
a decentralized and AI-enabled SO approach to enhance their
performance. The process of orchestrating AI models required
the utilization of the abovementioned communication buses
and a set of interactions among modules described in Figure 3.
First, the MSO notifies the DSO that there could be a situation
that requires the addition of an AI model to prevent or enhance
a specific situation (Step 1). For example, the MSO can predict
congestion situations in certain parts of the continuum at which
NSs are placed, energy consumption above a certain threshold
or security concerns that may require these AI-trained models
to follow the situation and put specific actions to prevent/solve
it. Once the DSO has been notified, it requests AI models to
the AIMLF through the AIMLF Communication Bus (Step 2),
indicating a specific model if the MSO previously notified this
information or models that meet concrete criteria informed by
the MSO. Based on this information, the AIMLF Orchestrator
will select the most suitable model and reply back to the DSO
(Step 3). Finally, the DSO will inject the received model into
the specific SO/SOs through the orchestration bus (Step 4).

Similarly, the AIMLF can also notify the MSO or the NSDir
of any anomaly or situation that requires specific actions
(e.g. anomaly detected in a certain NS or some predictions
that require updates on the NS). This communication will go
through the Inter-Framework Gateway, and if it requires the
deployment of new models within the DSO, the subsequent
steps are the same as the ones previously introduced (Figure 3).

D. Use case and preliminary results

To validate the architecture and workflows proposed in Sec-
tion III, we present a use case that demonstrates the practical
application of AI-driven self-healing mechanisms in 6G cloud
networks. Specifically, this use case focuses on latency-aware
Virtual Network Function (VNF) scaling, leveraging real-time
latency monitoring, machine learning (ML)-based predictions,

and a threshold-based decision-making framework to ensure
service-level agreement (SLA) compliance while optimizing
resource utilization.

The functionality of the system is depicted in Fig. 4, where
each step of the process is illustrated. Below, we provide a
detailed description of each step.

• (1) Latency Prediction Model Training: The AIMLF
uses real-time and historical data from the Resource
Database to train latency models, which are stored for
deployment as shown in Step #1 of Fig. 4.

• (2) Real-Time Prediction and Anomaly Detection:
SO1 in the DSO uses the deployed model to predict SLA
violations and detect anomalies in real-time (Step #2 in
Fig. 4).

• (3) Root Cause Analysis: SO2 performs AI-based diag-
nosis to identify causes of latency issues, such as traffic
spikes or VNF inefficiencies (Step #3 in Fig. 4).

• (4) Corrective Actions: The NSDir initiates VNF scaling
or resource reallocation based on SO insights to restore
SLA compliance (Step #4 in Fig. 4).

• (5) Continuous Monitoring and Retraining: The
AIMLF monitors model performance and triggers retrain-
ing with updated data when accuracy drops (Step #5 in
Fig. 4).

By following these steps, the system ensures proactive
latency management, optimal resource allocation, and au-
tonomous network adaptation. The resulting benefits are de-
tailed below.

• SLA Compliance and Service Reliability: Proactively
predicts and prevents latency issues to meet URLLC
requirements, ensuring reliable performance for critical
applications.

• Energy Efficiency and Resource Optimization: Op-
timizes VNF usage to reduce energy consumption and
costs, activating resources only when needed.

• Self-Healing and Autonomous Network Operation:
Uses AI to detect, predict, and resolve issues automat-
ically, enhancing resilience and reducing downtime.

• Improved Scalability and Adaptability: Supports dy-
namic scaling and adapts to network changes through
continuous learning and retraining.

To validate the feasibility of the proposed workflow, we
have developed a small-scale PoC using state-of-the-art tech-
nologies as depicted in Figure 3. The implementation consists
of a microservices-based approach where each functional
block is implemented using Python FastAPI, which provides
high performance and scalability with a minimal overhead.
The AI/ML Framework includes a direct connection with a
database of ONXX pre-trained models that can be retrieved
from the DSO following the abovementioned workflow, and
all the components are connected through ZeroMQ using the
PUB/SUB communication model. We run an initial set of
experiments where five different models are requested from
the DSO once the MSO identifies and notifies the anomaly.
We depict the results in Table I. Results show that for ”m-
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Fig. 4. Use case architecture illustrating each step of its functionality.

check” and ”m-replacement” the the latency remains low,
since they are communication points in software. In contrast,
”m-request” incurs substantially higher latency due to the
need to retrieve a typically large model. The last column
shows the total latency accumulated across all checkpoints,
with resnet50 having the highest latency and ResNet-preproc
the lowest. These findings support the effectiveness of our
proposed approach, demonstrating that it introduces minimal
overhead in the model communication process.

Estimated Latency (ms)

Model m-check m-request m-replacement Total

Model #1 0.000565 1.052840 0.001858 1.055262

Model #2 0.000602 0.389908 0.000853 0.391363

Model #3 0.000418 0.494493 0.000821 0.495732

Model #4 0.000388 0.496574 0.001025 0.497986

Model #5 0.000353 0.242890 0.000818 0.244061

TABLE I
ESTIMATED LATENCY OF FIVE DIFFERENT MODELS.

IV. AI-DRIVEN OPTIMIZATION IN DECENTRALIZED
SERVICE ORCHESTRATION

The key benefits of decentralization for AI-powered service
orchestration reside in the low-latency and real-time decision-
making, scalability, flexibility and enhanced fault tolerance,
resiliency and security. While a traditional centralized SO may
introduce significant overhead (e.g. due to data aggregation
or processing bottlenecks), the decentralized approach allows
for distributed AI-driven operation that focuses on specific
parts of the NS, significantly reducing the time needed (e.g.

service scaling actions or failure detection). Moreover, en-
hanced scalability is intrinsically linked to decentralization,
allowing the AI-powered SOs to scale better by enabling
a better workload distribution. Decentralization also allows
for self-operating SOs that can proactively detect anomalies
either individually or in a collaborative manner and perform
continuous learning, enabling model updates that may only
affect part of the SOs within the DSO. Finally, fault tolerance,
resiliency and security are widely enhanced given that failures
may be contained locally (preventing cascading effects), and
isolation among SOs also prevents sensitive data exposure
while, at the same time, providing an improved framework
toward complying with the multiple and non-homogeneous
regulatory requirements.

Decentralized intelligent orchestration at the DSO is not
only about localized intelligence but rather, it may require
mechanisms for knowledge sharing within the DSO and in
the overall system.

Before discussing the benefits of decentralized AI-driven
service orchestration, it’s important to clarify that only
the inference stage is decentralized. The AIML Framework
(AIMLF) remains centralized for tasks like data aggregation
and model training, but it distributes trained models to local
Service Orchestrators (SOs) within each Decentralized Ser-
vice Orchestrator (DSO). This allows for localized, real-time
decision-making at the edge, improving responsiveness and
scalability. Knowledge sharing refers to the AIMLF sending
AI insights and updates to DSOs and their SOs, maintaining
coordination across the system.

A. Intra-DSO Knowledge Sharing

The different SOs conforming to a DSO may be responsible
for orchestrating different virtual network functions within an
NS without even sharing the optimization goals. However,
information received by each of them may be vital for other
SOs to achieve a non-envisioned optimization level. Hence,
a knowledge-sharing model is required so that different AI
models placed in SOs within a DSO can share information
without affecting fault tolerance and security. Fortunately,
there are AI/ML approaches that can be used toward trusted
and secure knowledge sharing:

• Federated Learning (FL): Each SO runs its own AI model,
which is locally trained, and instead of sharing raw data
with a central entity, it shares model updates so that
aggregated knowledge can be built and shared with other
SOs to allow their models to improve [4].

• Reinforcement Learning (RL): This approach uses RL on
each SO for optimization purposes but additionally, each
SO shares reward signals or learned policies with other
SOs to allow their RL agents to improve their operation
[12].

• Graph Neural Network (GNNs): This approach represents
the relationships among SOs as a graph, and the agents
on each SO share knowledge (e.g. policies such as ”this
orchestration action reduces latency” with other SOs
according to the defined relations [13].
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• Convolutional Neural Networks (CNNs): CNNs can be
adapted in orchestration scenarios to extract hierarchical
features from time-series telemetry or multivariate net-
work performance metrics. This enables SOs to detect
e.g., patterns and anomalies in localized data streams
[14].

B. Inter-DSO AI Knowledge Sharing

Intra-DSO knowledge sharing enhances the orchestration of
a single domain by enabling collaboration among AI-driven
SOs within a trusted environment. Extending this sharing
across DSOs poses challenges due to anonymization require-
ments and limited applicability across domains, though similar
approaches can be adapted to enable secure and trusted inter-
DSO knowledge exchange.

• MOF Assets Repository: Pre-trained models from differ-
ent SDOs can be stored in the Assets Repository (ARep)
of the MOF, allowing other DSOs to reuse them.

• AI model exchange through transfer learning: Trained
models could be reused in other DSOs, enabling the usage
of models optimized in one domain into other related
domains as black-box but with the ability to further fine-
tune it during operation.

• Federated Learning (FL) between DSOs: This approach
consists of sharing model updates instead of complete
models, contributing to the generation of federated mod-
els that can also be stored in the ARep.

C. Challenges and Future Directions in Knowledge Sharing

Knowledge sharing enhances system performance by pro-
viding insights across different orchestration domains. How-
ever, it faces challenges such as privacy concerns and interop-
erability issues. One key challenge is the sensitivity of model
training data, which could be leaked if malicious users gain
access. Techniques like federated learning (FL) or differential
privacy can mitigate this risk.

The diversity and lack of standardization in orchestration
domains also hinder seamless knowledge exchange. To over-
come this, defining exchange points for model sharing or using
transfer learning to adapt models can improve compatibility.
Additionally, managing decentralized models requires balanc-
ing inference time, accuracy, and optimal update intervals. Hi-
erarchical deployment strategies or adaptive update schedules
can help reduce the overhead.

Lastly, security and trust are essential in knowledge sharing.
Models must be authenticated, and frameworks like zero-trust
can ensure that shared models are reliable, preventing biased
or compromised models from degrading system performance.

V. CONCLUSION

This paper introduces the DSO and its integration with the
Management and Orchestration Framework (MOF) and AI/ML
Framework (AIMLF). By decoupling service and resource
orchestration, the framework enhances scalability, fault toler-
ance, and flexibility. AI/ML-driven decision-making supports

intelligent resource allocation, anomaly detection, and real-
time optimization. We show preliminary results in a use case
which demonstrates an AI-powered self-healing mechanism
for latency-aware VNF scaling. Finally, we discuss how AI-
driven optimization is key in decentralized orchestration, en-
abling better decision-making, fault tolerance, and scalable
workload distribution.
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