IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

267

Optimal Scaling and Offloading for Sustainable
Provision of Reliable V2N Services
in Dynamic and Static Scenarios

Livia Elena Chatzieleftheriou™, Member, IEEE, Jests Pérez-Valero, Jorge Martin-Pérez™,

and Pablo Serrano

Abstract—The rising popularity of Vehicle-to-Network (V2N)
applications is driven by the Ultra-Reliable Low-Latency
Communications (URLLC) service offered by 5G. Distributed
resources can help manage heavy traffic from these applications,
but complicate traffic routing under URLLC’s strict delay
requirements. In this article, we introduce the V2N Computation
Offloading and CPU Activation (V2N-COCA) problem, aiming
at the monetary/energetic cost minimization via computation
offloading and edge/cloud CPU activation decisions, under
stringent latency constraints. Some challenges are the proven
non-monotonicity of the objective function and the no-existence
of closed-formulas for the sojourn time of tasks. We present a
provably tight approximation for the latter, and we design BiQui,
a provably asymptotically optimal and computationally efficient
algorithm for the V2N-COCA problem. We then study dynamic
scenarios, introducing the Swap-Prevention problem, to account
for changes in the traffic load and minimize the switching on/off
of CPUs without incurring into overcosts. We prove the problem’s
structural properties and exploit them to design Min-Swap, a
provably correct and computationally effective algorithm for the
Swap-Prevention Problem. We assess both BiQui and Min-Swap
over real-world vehicular traffic traces, performing a sensitivity
analysis and a stress-test. Results show that (i) BiQui is near-
optimal and significantly outperforms existing solutions; and (if)
Min-Swap reduces by a > 90% the CPU swapping incurring into
just < 0.14% extra cost.

Received 20 November 2024 revised 13 June 2025 and accepted 29
August 2025. Date of publication 5 September 2025; date of current
version 29 December 2025. The work of Livia Elena Chatzieleftheriou
was supported by her Juan de la Cierva award (JDC2022-050266-
I), funded by MCIU/AEI/10.13039/501100011033 and the European
Union “NextGenerationEU”/PRTR, and by the MADQuantum-CM
project, funded by the Regional Government of Madrid and the EU
“NextGenerationEU”/PRTR. This work is also partially supported by the
Spanish Ministry of Economic Affairs and Digital Transformation and the
European Union-NextGenerationEU through the UNICO 5G I+D SORUS
project, and by the Smart Networks and Services Joint Undertaking (SNS
JU) under the European Union’s Horizon Europe research and innovation
programme under Grant Agreement No 101192035 (AMAZING-6G). The
associate editor coordinating the review of this article and approving it
for publication was M. Tornatore (Special issue on Reliable Networks).
(Corresponding author: Livia Elena Chatzieleftheriou.)

Livia Elena Chatzieleftheriou was with the NETCOM Lab, IMDEA
Networks Institute, 28918 Leganes, Spain. She is now with TU Delft, 2628
XE Delft, Netherlands (e-mail: 1.e.chatzieleftheriou@tudelft.nl).

Jestis Pérez-Valero is with the Department of Information and
Communications Engineering, Universidad de Murcia, 30003 Murcia, Spain.

Jorge Martin-Pérez is with the Departamento de Ingenieria de Sistemas
Telematicos, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Pablo Serrano is with the Escuela Politecnica Superior, Universidad Carlos
III de Madrid, 28911 Leganés, Spain.

Digital Object Identifier 10.1109/TNSM.2025.3605408

, Senior Member, IEEE

Index Terms—Vehicle-to-network, V2N, ultra-reliable low-
latency communications, URLLC, queueing theory, algorithm
design, optimization problem, asymptotic optimality.

I. INTRODUCTION

ETWORK intelligence has emerged as a pivotal goal

for 6G. In conjunction with recent advancements in
the automotive sector, Vehicle-to-Network (V2N) applications
attract significant interest from both academia and industry [2].
A notable instance of V2N communication is Tele-operated
Driving (ToD), wherein vehicles are remotely controlled by
operators who rely on inputs from the vehicles, including
augmented video feeds from the vehicle’s front camera that
highlight recognized objects or obstacles to be avoided.

For safety-critical applications like these, an Ultra-Reliable
Low Latency Communication (URLLC) service is indispens-
able [3] because it will ensure that the delay experienced
by any task between the vehicle and the network remains
below a specific threshold with a probability exceeding a
predefined reliability threshold. For example, ToD services
mandate that transmissions are completed within 100 ms
with a 99.999% reliability [3], encompassing transmission and
propagation delays, as well as the sojourn time (i.e., waiting
plus service time) at the servers. Given the stringent nature
of these requirements, any delay could potentially result in
vehicular crashes, including those involving pedestrians.

To ensure timely processing of vehicular tasks, these can
be offloaded to servers located either in the cloud or at the
network edge. While cloud servers offer greater computational
power, their relative distance from the vehicles could introduce
significant delays. On the other hand, edge servers, colocated
with Road-Side Units (RSUs) along roads, can provide more
immediate services, albeit at a potentially higher cost or with
less computational power [4].

This presents a challenging trade-off due to the dynamic
scaling of computing resources. Dimensioning the system to
handle peak traffic ensures URLLC service availability but
leads to resource wastage during off-peak hours. Adapting
resources based on demand could result in significant savings
for service providers, yet maintaining URLLC guarantees
for vehicular applications remains paramount. The challenge
is scaling computing resources effectively, determining the
appropriate number of processing units at both edge and
cloud that guarantees an appropriate performance. Existing
approaches often fall short in meeting the stringent latency

1932-4537 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence
and similar technologies. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.or

Authorized licensed use limited to: UNIVERSIDAD

Eg)ublicationi/rights/index.html for mare informatios
ARLOS TI'MADRID. Downloal

tion.
ed on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8786-2337
https://orcid.org/0000-0003-2544-2692
https://orcid.org/0000-0001-9295-1601
https://orcid.org/0000-0002-5176-0013

268 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

and reliability constraints of URLLC services. Many works
focus on average performance metrics, such as average delay
or utilization, not capturing the tail latency, and others fail to
provide tractable methods to guarantee URLLC requirements
under dynamic load conditions. A detailed discussion of
related work is provided in Section VIII.

Our work models the system as an M /T'/k queue, where
I" a mixture of Gamma distributions, and provides a closed-
formula approximation of the service time distribution with
provably high accuracy. We rigorously characterize the sojourn
time distribution and develop efficient algorithms that ensure
URLLC guarantees while minimizing operational costs, suc-
cessfully tackling the challenges above. In nutshell:

e We introduce the V2N Computation Offloading and CPU
Activation (V2N-COCA) Problem. The problem consists
in minimizing operational costs while deciding CPU
scaling and edge offloading for URLLC V2N video tasks.
We study the structural properties of the V2N-COCA
Problem and leverage them to propose BiQui, a provably
asymptotically optimal algorithm with low complexity
that we extensively evaluate over real-traces.

e We introduce an approximation of the M /T'/k sojourn
(i.e., waiting plus service) time, that is required to ensure
URLLC requirements but up to now lacked a closed-
form expression. We rigorously demonstrate that our
approximation works perfectly when targeting V2N video
tasks, and we discuss its applicability to other domains.

This article also presents a substantial extension of our
previous conference publication [1]. More specifically:

¢ We analyze dynamic scenarios where computing load and
resource availability can change drastically. We formulate
the Swap-Prevention problem to minimize CPU on/off
switching frequency, which in turn extends CPU lifetime
and reduces costs.

e We study the problem’s structural properties, and use
these insights to design the Min-Swap algorithm. We also
prove its correctness and computational efficiency.

e We extend our previous performance evaluation to
analyze Min-Swap’s performance under sudden system
changes. We also assess V2N-COCA’s performance in
additional scenarios and conduct a sensitivity analysis.

In Section II we present our system model. In Section IIT we
introduce and analyse the V2N-COCA problem. In Section IV
we propose and evaluate our approximation of the tasks’
sojourn time at the servers. In Section V we design BiQui
and analyze its complexity and approximation properties.
In Section VI we introduce and analyze the CPU Swap-
Prevention problem and Min-Swap. In Section VII we evaluate
BiQui and Min-Swap. In Section VIII we discuss the related
work, and in Section IX we conclude the paper.

II. STATIC SCENARIOS: SYSTEM MODEL

We illustrate in Fig. 1 the considered scenario: passing
vehicles have wireless connectivity through Road Side Units
(RSUs) deployed along the road. We provide notation in Tab. L.

Vehicles use a remote driving service where highly-accurate
computationally-intensive Artificial Intelligent (AI) algorithms
decide which actions vehicles should take based on their

TABLE I
NOTATION TABLE

Notation | Description
1% Number of vehicles
T Maximum delay
Pa Reliability requirement
l; Frame length of task ¢
Ao Frame rate from vehicle v
Ac and \g Incoming rate at the cloud and the edge

Task average service time
Service time at the cloud and the edge
Sojourn time to process the task
Transmission and propagation delay
Total delay experienced by task ¢

S
Se(+) and Se(+)
s0jo

l)tTan and l)pTOp

C and E Maximum available CPUs at cloud and edge
coc and coe Subscription cost at the cloud and edge
cic and cie Usage cost at the cloud and edge
x and y CPUs activated at the edge and cloud
z Offloading policy
Q Feasibility region
tasks RSU 2 —[ED -
I
5 &b ”||L " Ccloud !
o3

Fig. 1. Vehicles produce tasks. We offload the task flows either to the cloud
(with probability z) or to the edge (with probability 1—z). We process the
frames by activating x = 1 CPU at the edge and y = 2 CPUs at the cloud.
Maximum available CPUs: E = 2 (edge) and C = 4 (cloud).

surroundings [3]. Vehicles hold a CPU in which some com-
putations can be performed, e.g., to preprocess frames before
actually performing heavier Al-related tasks [5]. However,
given the complexity of these algorithms and the possible
inter-vehicle interactions, the complex Al tasks are offloaded
to external resources, either at the edge or the cloud: edge
resources might provide shorter Round-Trip Times (RTTs), but
there might not be enough computing capacity for peak-hour
conditions or they may become too expensive, and therefore
cloud resources might be preferable despite their longer RTTs.
The main objective of the service provider is to activate the
computation resources that minimize the operational costs
while ensuring the URLLC service guarantees.

URLLC application and offloading decisions. Each
vehicle v generates a flow of computing tasks at a rate \,,
e.g., a flow of video frames taken from a front camera to be
processed. For simplicity, we assume a single URLLC service,
which implies that all vehicles generate traffic following the
same model and there is a single service requirement (however,
our analysis can be generalised to capture multiple services
with different rates and requirements). We assume that the
URLLC service requires that for each task i, its total delay
D;(-) must be less than a maximum delay 7 with at least Pg
probability [3]. This can be formalised as

P(D;(-) < T) > Pg,V task i. (1)

We will refer to T as the delay requirement and to P as the
reliability requirement. Following [6], the length I; of frame i
follows a distribution that is specific to the service type and
video format. The terms “frames” and “tasks” will be used

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES 269

interchangeably. In order to avoid conflicts with apps with less
stringent delay applications, URLLC services in practice can
be assigned to a dedicated slice in the network [7].

To ensure a high-quality URLLC vehicular service, we must
preserve the order of the packets within each flow (i.e., for
each vehicle). This can be ensured by implementing a per-flow
traffic split between the edge and the cloud at the RSU, using
e.g., flow hashing [8]. In practice, this implies that the comput-
ing load generated by a portion z € [0,1] of flows is offloaded
to the cloud, and the computing load of the remaining portion
(1—z) of flows is executed at the edge.l This work focuses
on Vehicle-to-Network (V2N) services, which rely on external
network resources for computation. Accordingly, we adopt a
two-tier architecture for offloading decisions, excluding a third
tier that would account for local vehicle-based computing. A
representative example is infrastructure-assisted driving, which
uses roadside infrastructure to improve autonomous vehicle
performance and safety. These services require global road
information, which is unavailable within the vehicle itself.
Therefore, we focus on data that must be offloaded to external
resources, rather than locally processed information.

Let A\ and Ao be the incoming computing demand at
the edge and the cloud server, respectively. Both A and Ao
are, naturally, functions of our offloading decisions z and the
number V of vehicles, and can be computed as:

Ap(z, V) =TVAy(1—2) and Ag(z, V)= VAiyz. (2)

Computing resources, activation decisions, service
model. In practice, edge facilities comprise areas of 10-
20km [9], hence one edge pool covers a whole urban area.
We assume that there are up to E CPUs available at the edge,
and up to C CPUs available at the cloud, whose computing
capacity is dedicated to the URLLC vehicular app. We denote
byxe {l,...,E}and y € {1, ..., C} the number of CPUs
to be activated at the edge and at the cloud, respectively,
which correspond to our activation decisions. Assuming that
the number of cycles required to process a task is linearly
proportional to its length [10], [11] with constant ¢ cycles/bit,
the service time to process a task of length /; in a CPU with
computational capacity cqg cycles per unit of time equals

S(Z’L) = lz'C/CO. 3)

Edge and cloud servers as M/G/k queues. We assume
that there are a large enough group of V vehicles using the
URLLC service, each one generating an independent flow of
tasks, e.g., a video flow. In practice, this will be the most common
scenario in a few years, since most of the vehicles are now
manufactured with such features. Under these conditions, the
Palm-Khintchine Theorem ensures that the aggregated video
arrival process follows a Poisson process at a rate A = V' \,.
Given that the offloading mechanism is based on hashing [8],
the resulting flows towards the edge and the cloud are also two
Poisson process (at rates A\ and A, respectively) since they
are the result of a random thinning of a Poisson process. Frames

IFor cases that the offloading decision may not result in integer solutions,
e.g., when z = 0.5 and the number N of vehicles is odd, it will be needed
to round z to the closest value that results in an integer split of vehicles to
the edge or to the cloud, and a confirmation or adjustment that the activated
CPUs can handle the incoming computational load after this rounding.

at each server are enqueued using a publish/subscribe protocol,
and thus each CPU processes frames in a sequential fashion.
As aresult, both the edge and the cloud servers can be modeled
as two different M/G/k systems [12]. More specifically, since
x and y denote our CPU activation decisions at the edge server
and the cloud server, respectively, the queuing system at the
edge as is an M/G/x queue with arrival rate Ap = A\(1 — 2)
and service rate g, and the queueing system at the cloud is
an M/G/y queue with arrival rate A\¢ = Az and service rate
wo, where pp and o depend on the computational capacity
of each location’s processing units. The M/G/k queue is one
of the most general models and does not have closed-form
expressions to characterize the tasks sojourn time (apart from
approximations, e.g., Kingman’s law). In Section III we present
our approximation to characterize the CDF of the sojourn time.

Total delay D; experienced by a task i. It is defined as
the total time since the task is generated, processed, and sent
back to the vehicle. It can be expressed as a function of the
number of vehicles V in the system, and the service provider’s
activation and offloading decisions, i.e., variables x,y and z,
respectively. Formally:

Di(va z,Y, Z) = Dtmn(li) + Dprop + Dsojo(vvx7 y,z), 4)

where Dyran, Dprop, Dsojo the radio transmission delay, radio-
to-server propagation time (back & forth), and task sojourn
time (i.e., waiting plus service time), respectively. We ensure
transmission latencies Dy,qy, in the order of few millisenconds
through a 3GPP-compliant NR deployment — see [13, Sec. 7]
and [14, Sec. 5]. Moreover, we guarantee communication relia-
bility with Type B frame repetitions [15, Sec. 6.1.2.3.2]. Using
a dedicated V2X slice for the service provider, propagation
delays Dyop can also be bounded. Thus, we focus our analysis
on the complex Dy, (V, 2, ¥, z), and we perform a sensitivity
analysis w.r.t. Dprop and Dypgp in Section VIL

Infrastructure costs. Our analytical framework is able to
capture both different economic models for the cost of the
infrastructure usage, and its energy consumption. Regarding
the energy consumption, the literature [16] identifies two main
components: (i) an energy consumption term caused by the
activation of the servers, which is proportional to the number
of activated CPUs, and (ii) an energy consumption term that
is proportional to the time the servers are busy with executing
tasks, i.e., the service time. Both terms depend on the type of
CPU (In Section VII, we analyze the impact of using faster,
more expensive cloud CPUs in terms of activation and energy
consumption) Regarding the cost of the infrastructure usage,
current pricing plans [17] also take into account two terms:
(1) a “subscription” cost for accessing a number of resources,
which is proportional to the number of activated CPUs, and
(i1) a “usage” cost that is proportional to the time the servers
are used. Based on the above, we define the total cost K as a
linear combination of the number of activated CPUs and their
service time as follows:

K(V7$7 Y, Z) = Cpe® + CocY + Clc/\C(z> V)S
+ cle)‘E(Za V)Sa (5)

where the constants ¢y and ¢, capture the subscription cost per
CPU at the edge and the cloud, respectively, the constants ¢,

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

270 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

and c1 . capture the usage cost per time unit at the edge and the
cloud, respectively, and Ao (z, V)s, Ag(z, V)s represent the
product of the incoming rate (at the cloud and edge) by the
service time. Specifically, s = S(I;) denotes the service time for
the average packet length [;, i.e., the average service time. Our
cost function is specific enough to accurately capture existing
energetic and monetary costs. At the same time, it is generic
enough to allow for specific particularizations to be incorporated
in it, e.g., by considering a variety of specific functions for the
service time, such as a that in eq. (3) or a fixed time per task
(irrespectively of its length).

Operational expenses. In (5) we capture the infras-
tructure cost for a given configuration x,y,z. Later, in
Section VI, we also capture the long-term operational expenses
introducing the time dependency in the configuration vari-
ables x(1),y(f),z(t). Specifically, in Section VI we consider
(i) the operational expenses due to switching on/off CPUs
x() — x(t — DI+ly(#) — y(t — D)I; and (ii) the infrastructure
cost over time K(x(),y(t),z(?)).

Remark: In our model we traded simplicity and the ability
to accurately capture the intricacies of real-world applications,
judiciously deciding to keep our model as lightweight as
possible. We provide more specific details regarding a wide
range of relevant factors in Section VII, where we use real-
world [18] infrastructure delays Dyyqpn and Dypop and vary the
maximum delay 7, the reliability requirement P, the CPUs’
computational capacity K, and the incoming demand A, V.

III. THE V2N COMPUTATION OFFLOADING AND CPU
ACTIVATION PROBLEM

We now introduce our optimization problem, and next
analyse its structural properties and associated challenges.

Optimization problem. We formalize it as follows:

Problem 1 (V2N Computation Offloading and CPU
Activation (V2N-COCA) Problem):

min K(V,z,y,2) (6)
m7y7z
st. Eq. (1),

ze€{0,1,...,E}, and y€{0,1,...,C}, (7)
2e[0,1].)

The objective in (6) corresponds to finding the CPU activation
decisions x and y and offloading decision z that minimise
the total operational cost defined in (5). Eq. (1) ensures the
URLLC requirements of vehicular applications are met. Eq. (7)
capture the upper bounds on the available CPU resources at
the edge and the cloud. Finally, Eq. (8) describes the offloading
decision z as a ratio in [0,1].

V2N-COCA Problem’s Structural Properties. We use
these in Section V, to design and analyse our computationally
efficient and asymptotically optimal algorithm. It holds that:

Proposition 1: The cost function in (5) is increasingly
monotone w.r.t. CPU activation decisions x, y.

This proposition implies that the minimum cost will be in
the boundary of the feasible region w.r.t. activation decisions.
We provide the proof of Proposition 1 in Appendix A.

We next study the feasibility region, with our motivation
being to better understand which points (i.e., decisions) would

Param | Value 2,12, 22) = (16,32, .685)
/2\2\1,100 5
T 100 ms - Q &
Pg 99.999% 7?1 000 | @, 21) Coj
Dgrop 18.2ms 8 L (16,31,.672 =1
brop 22.8 ms »}/ (w3, ys, 23) g
Coc, Cle 15,2 k 900 = (15,32, .692)
Cpe, Cle 30, 4
Siy A 22.5, 1.87 ppms 0.6 0.7 P 0.8 0.9
Fig. 2. Total costs vs. offloading decision z for the feasibility region and

boundary, depicted for an instance considering a ToD service [3] and real-
world propagation delays [18], characterized by the values of the table (left).

be preferable as solutions, to drive the design of our algorithm.
The feasibility region {2 of Problem 1 is defined as 2 =
{(z,y,2):(1),(7),(8)}, ie., intuitivelly, as the set of all
those combinations of decisions (x,y,z) that meet the URLLC
requirements, upper bounds on available computing resources,
and percentage of offloaded computing load. We illustrate in
Fig. 2 the feasibility region for the scenario described in its
caption. In general, it holds that:

Proposition 2: For the feasibility region {2 dictated by
egs. (1), (7), and (8), it holds that:
1) It is not continuous w.r.t. the offloading policy z. In
fact, its boundary is a step function.
2) It is not monotone w.r.t. the offloading policy z.
3) Between two consecutive steps, the boundary is linear
w.r.t. any offloading policy z.

J

Proposition 2 implies that we cannot exploit the continuous
nature of the offloading decisions z to find the optimal solution.
Still, point (3) will be useful to design an asymptotically optimal
algorithm. We provide the proof of Proposition 2 in Appendix B.

Challenges for the use of the optimal solution and for
the design of an efficient solution. The V2N-COCA Problem
is a mixed integer programming problem, with non-monotone
objective function w.r.t. one of its decisions (Proposition 2).
An additional major challenge for finding the optimal solution
or for the design of efficient algorithms to solve it, is the
quantification of the total delay D;(V,z,vy,2) experienced
by any task i (defined in Eq. (4)), which is the first of the
problem’s constraints, ensuring that URLLC requirements are
met. More specifically, the challenge stems from the fact that,
to the best of our knowledge, no closed-form expressions are
available to quantify the sojourn time Dg,jo(V, 1, y,z) in
M/G/k systems. Using the optimal solution or designing an
efficient one requires knowing the sojourn times of tasks in
the M/G/k queues at the edge and cloud servers. As there
are not closed-formulas for these quantities, using the optimal
solution implies obtaining the actual sojourn times for all
scenarios and configurations, to then do an exhaustive search
over them in order to conclude to a decision. Indicatively, as
we mention in Section VII, in our experimentation, obtaining
the sojourn times for all configurations of a scenario took in
the order of hours. Clearly, this is not a practical approach
to follow in real systems, because of their dynamic nature,
in which the traffic load may change throughout the day or
computing resources outages may occur. At the same time,
the existing approximations for the M/G/k average waiting
time do not suffice in URLLC, and we will compare against

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES 271

TABLE 11
PARAMETERS FOR FRAME LENGTH DISTRIBUTION [; [6]

Type wi Bi

I /12 16487 21499

B 5/12 15.584 14608

P 6/12 17 15895
0.08

w

0 0.04

o

0

0 10 20 30 40 50
sj [ms]

Fig. 3. PDF of the service time s;.

them in Section VII. However, due to the safety concerns
involved in V2N applications, the distribution of the sojourn
time in the M/G/k system to ensure that V2N tasks are timely
processed, respecting both the target delay and the reliability
requirements. We now present and validate our approximation
for the M/G/k sojourn time distribution.

IV. OUR SOJOURN TIME APPROXIMATION

We first present initial thoughts stemming from experimen-
tal evidence, we then discuss the structure of the URLLC
requirement and our approximation proposal, and we validate
it both w.r.t. accuracy and impact when solving Prob. 1.

Remark: We focus on V2N computing tasks performed
over video frames taken e.g., from the front/back camera of
autonomous vehicles [5], and we rely on evidence from the
real-world traces in [6]. Our sojourn time approximation can
be generalized and transferred to any scenario and domain
whose data has similar characteristics. Given the generality
of our model, it could also apply in different settings. For
instance, it could be used for augmented reality applications,
such as a remote surgery operation.

Initial thoughts stemming from experimental evidence.
Each vehicle v generates an H.264/AVC flow, i.e., a flow of I,
B, and P frames arranged in a Group of Pictures (GOP) [6].
The frame length of each type i € {/, B, P} follows a Gamma
distribution with shape «; and scale [3; in Tab. II, and thus
the frame length of the flow follows a mixture of them where
each type i is weighted with w; therein. We will call this
distribution I'. Then, the average video frame length is [=
wrarfr + wgagfp + wpapBp =~ 260kb. The number of
cycles to process a video frame is proportional to its length,
with a constant of approx. 21.42 cycles/bit [10]. The service
time to process a video frame of length [; is given by s; =
l; x 21.42/250 us, and therefore the average service time per
task for a CPU operating at 250 MHz is s = 22.3ms. We
depict s;’s Probability Density Function (PDF) in Fig. 3.

The structure of the URLLC requirement in eq. (1)
and our approximation of the sojourn time. M/G/k systems
are one of the most general frameworks for modelling queu-
ing systems, but there are no closed-form expressions to
characterise the distribution of their total sojourn time fsqjo,
which captures the sum of the waiting and service time. This
time equals to the addition of waiting and service times, and

therefore its distribution is given by the convolution of the
distribution of the waiting time fj;; and the distribution of the
service time fg, i.e.,, fsojo = fiv * fs. In V2N applications,
the service time could relate to the time that is needed to
process video frames captured by the vehicle cameras. Such
time is directly proportional to the video frame length which,
as discussed above, is distributed as a mixture of gamma
distributions. Motivated by the small variance of such tasks
(see Fig. 3) we make the following proposition to approximate
the sojourn times based on the waiting times of an M/D/k:

Proposition 3: Let I' be a mixture of Gamma distributions
as defined above and with the parameters of Table II. Then,
the distribution f,j, of the sojourn time Dy, in an M/I'/k
queue, for video tasks [6], can be approximated with a
significance factor & = 0.01 by the convolution of the
queuing time distribution fy; of an M/D/k queue with
deterministic service times, and the service time distribution
fg defined by [6] (i.e., a mixture of Gamma distributions).
We formulate this as:

fwm /ey * fsmryr)
~ fwm/p/k) * fs(m /T /k)-

fsojo =

©))

The importance of this proposition is two-fold. First, it pro-
vides a closed-form expression to approximate with accuracy
« = 0.01 the sojourn time, i.e., with a 99% confidence level in
the estimation. Second, it opens the way for solving Problem 1
by using existing results in the literature. Indeed, we can get

fW(M/D/k)(t) = d/thW(M/D/k)(t) using the fOHOWiIlg
closed-form expression [19, Eq. (4.4)]
kc—1
kD —t
Fyy (v ypyiy(t) = e AP0 Z Qhe—j— 1 i ,
where £ € Nt € [(k — l)D,kD), and D = E[S(}y)],

and @); the probability of having up to j tasks in the queue
in an M/D/k system [19]. To compute (); we leverage the
probability p; of having j tasks in the system, ie., Qj =
Z]H_g p;. As shown in [20, Sec. 4.5.2], such probablhtles
exhibit a geometric tail behaviour, meaning p; ~ p un’ M for
Jj > M and M sufficiently large. In particular, 7 is the unique
solution of e)‘D(lfl/”)n*k = 1. We compute p; using (10)
below, an expression from [19, (2.2)]. Knowing that Z;’O pj =
1, we have an infinite system of linear equations to solve.
We leverage the geometric tail behaviour of p; to truncate
the infinite system to a finite system of M linear equations.
According to [20, Sec. 2.3.3], for any j < M, the truncated
linear system is:

ik k+j j—it+k
_xp (ADY oD D)
bj=e¢ : Dy pie
(10)
P M—-1
_ PM .
,1_n+zpj. (11)
J=0
When M = 100, this results in 7-digit precisions for p;. Having

pj, we obtain Q; and fy(ar/p/k)(t), and we compute the
sojourn time approximation fs,j, in Proposition 3.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

272 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

Proposition 3: practical considerations and constraints.
Our M/T'/k model applies to scenarios with a large num-
ber of V2N tasks consisting on H.264/AVC video frames,
processed sequentially by k& CPUs. Under these conditions,
task arrivals follow a Poisson process (by the Palm-Khinchin
Theorem), and service times follow a mixture of gamma
distributions, denoted by I'. Thus, Proposition 3 supports
dynamically scaling the computing resources as needed in
order to ensure URLLC in (1) based on the computing load,
thus resulting in minimization of their operational costs over
time. We introduce, analyze, and solve the dynamic scenario
in Section VI. We now validate Proposition 3.

Kolmogorov-Smirnov test to rigorously validate
Proposition 3. We compare the Cumulative Distribution
Function (CDF) of the sojourn time obtained by convoluting the
service times of M/I'/k queueing systems with the waiting times
of (i) M/T'/k systems (obtained through exhaustive simulations),
and (ii)) M/D/k systems (obtained using eq. (4.4) from [19]).
We perform the comparison for different values of the intensity
factor I = A/u (Erlangs) and number of servers k.

We note that the values considered for k are in the order
of magnitude of those required when experimenting with
data from a real-trace dataset (see Section VII). We employ
the well-established non-parametric statistical Kolmogorov-
Smirnov (KS) test, which determines whether two samples
originate from the same distribution or not. Our null hypothesis
is Hy: “the CDF from our approximation is slightly below the
actual CDF.” It implies that our analysis could be more conser-
vative in terms of the URLLC, possibly resulting in a higher
probability of being within the target delay, thus possibly being
even more stringent than the URLLC requirement — and never
resulting in latency not within the URLLC threshold. In the
KS test, we accept the null hypothesis Hy when the p-value
is greater than the selected threshold «, which indicates that
there is no significant difference between the two CDFs.

Results are presented in Table III, for k£ = {3,5,10,15,20}
servers. In all cases, the p-value remains above the significance
level (), leading to acceptance of Hy. In Fig. 4 we plot
our approximation (lines) and the exhaustive simulations
(markers), for k = 3, 5, 10 servers at the edge and cloud. Note
that smaller values of k correspond to larger errors between
our sojourn time approximation in Proposition 3 and the M/T'/k
simulations. Nevertheless, we observe that our approximation
matches the CDF of the sojourn time that is obtained in the
M/T'/k simulations for all combinations of CPUs and load in
the system. Moreover, Fig. 4 shows that the approximation of
Proposition 3 is tight at high percentiles, but also conservative
as approximation, resulting in the activation of at most 1
additional CPU (and this only for high loads and the stringiest
reliability constraints). This is certified also in Table I'V.

The impact of the sojourn time approximation. We
evaluate the effectiveness of our approximation of the sojourn
time of M/T'/k in Proposition 3, vs. the actual sojourn time
of the M/T'/k, in terms of its results when solving Problem 1.
In Table IV we present the results of different combinations
of URLLC requirements expressed in terms of the maximum
accepted delay T and the reliability Pg [3] (rows), and
different traffic intensities captured as I = \s, where s the
average service time of tasks (columns). Each pair (kp, ko)

TABLE III
COMPARISON OF (KS STATISTICS, P-VALUE) OF THE
KOLMOGOROV-SMIRNOV TEST FOR DIFFERENT LOADS (/) AND NUMBER
OF SERVERS (k) WITH SIGNIFICANCE LEVEL o = 0.01

k (servers)

I (Erlang) | k=3 k=5 k=10 k=15 k=20
I=1 0,1) 0,1) 0,1) 0,1) 0,1)
I1=2 0,1) 0,1) 0,1) 0,1) 0,1)
I=4 0,1) 0,1) 0,1) 0,1 0,1)
I1=28 0,1) 0,1) 0,1 0,1 0,1)

Take-away: in all scenarios Hy: “The CDF of Prop. 3 is slightly
below the CDF of M/I'/k simulations” is accepted.

TABLE IV
COMPARISON (k1, ko) OF THE MINIMUM CPUS REQUIRED BY
PROPOSITION 3 (k1) AND M/T'/k SIMULATIONS (ko) TO MEET V2N
SERVICE REQUIREMENTS UPON DIFFERENT LOADS I = As, WHERE A\
RANGES FROM 44.44 PKT/SEC TO 1422.22 PKT/SEC AND THE SERVICE
TIME s = 22.3ms [6]

Reliability Load (Erlang)
Requirement I=1 1=2 1=4 1=8 I=16 =32
100ms, 99.999% | (3,3) (44) (6,6) (10,100 (18,18) (34,34)
100ms, 99.9% 22) (33) 6.5 9,9) (18,17) (34,34)
50ms, 99.9% 33 G5 @7 a1l (20,19 (36,35)
50ms, 99% (3,3) 44) (6,6) (10,100 (18,18) (35,34)

captures the minimum number of servers needed to guarantee
the corresponding requirements in the first row. The results
of Table IV suggest that the optimal solution of the V2N-
COCA problem found using our M/I'/k approximation of
Proposition 3 requires the same number of CPUs as when
exhaustive M/I'/k simulations are used, i.e., when having
perfect knowledge of the sojourn times in advance. In only
a few cases it is conservative, overestimating the number of
CPUs to activate by one, which in all cases results in difference
~1% compared to the oracle. These cases (marked in the table
with bold) have high load, high reliability requirement, and
low target delay. From the above, we conclude that using the
approximation in Proposition 3 leads to near-optimal results
and, given that is a closed formula, opens the way for the
design of our efficient solution.

Discussion. An alternative would have been to create tables
with the solution of the Problem 1, and consult the tables every
time that is needed. However, the time that is required by the
algorithm to construct the table of results is impractical, as
the procedure necessitates evaluating and storing results for
all possible scenarios. Even for a single, predefined scenario,
identifying the optimal solution is time-intensive and imprac-
tical to maintain in table form. Indicatively, the duration for a
single scenario is on the order of several hours, highlighting
its limitations for real-time or near-real-time applications. On
the contrary, our approximation uses a closed-form expression,
allowing for the solution of Problem 1 within milliseconds
(see Section V). This rapid computation, combined with our
approximation’s excellent performance, makes it suitable for
highly dynamic scenarios where traffic load fluctuates through-
out the day or in situations of computing resource outages. In
such cases, resources can be dynamically adjusted to match
actual demand, ensuring continuous and URLLC services for
vehicles. We will study such scenarios in Section VI.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES

1

CDF with 3 CPUs

0

IV Vs 20

0.8 -

0.6 -

0.4 4

0.2

T 5

1.000000
0.999998
0.999996
0.999994
0.999992
0.999990
50 100 150 200 250

} p=0.2 mmmmm 0=0.6 s
/ p=0.4 mmmm p=0.8

0

20 40 60 80 100 120 140 160 180 200
Sojourn time [ms]

(a)

CDF with 5 CPUs

1

0.8 -

0.6 -

0.4 4

0.2 4

0

273
— ap_oo
3 Lad 1 4
- w
1.000000 Z 08 1.000000
0.999998 [©] 0.999998
0.999996 o 064 0.999996
0.999994 _: 0.999994
0.999992 = 0.4 0.999992
0.999990 2 0.999990
50 100 150 200 250 w g 50 100 150 200 250
) o 024
0=0.2 mmmm— 0=0.6 m— O 0=0.2 mmmm—m 0=0.6 m—
0=0.4 mmmm 0=0.8 p=0.4 mmmm= 0=0.8
T T 0 T T

0

20 40 60 80 100 120 140 160 180 200

Sojourn time [ms]

(b)

0

20 40 60 80 100 120 140 160 180 200

Sojourn time [ms]

(©

Fig. 4. Comparison between our sojourn time approximation from Proposition 3 (lines) and M/I'/k exhaustive simulations (markers). Our approximation is

tight and conservative for all loads and CPUs.

V. OUR JOINT OFFLOADING AND CPU
ACTIVATION ALGORITHM

We now design BiQui: an efficient BInary search solution over
the QueUlng theory approximation of Proposition 3 for solving
the V2N-COCA Problem. Then we analyse its correctness,
computational complexity, and prove its asymptotic optimality.

A. Algorithm Design and Intuitive Explanation

BiQui exploits the objective function’s and the feasible set’s
properties (Proposition 1 and 2), and relies on our closed-
form approximation of the task sojourn time in the system
(Proposition 3). We now present in detail its steps, which
are divided in three phases. For each we provide a high-level
rationale and intuition behind it, and refer to the specific lines
in Alg. 1.

Phase 1: Initialization. (line 1). Initialize offloading as
z = 1 and number of edge CPU activation as x = 0, motivated
by the typically lower prices of cloud servers vs. those of edge
servers [18]. If the opposite holds, the initialization is inverted:
z=0and y = 0. We also initialize as empty the set £ = (J of
the explored configurations for different offloading policies.

Phase 2: Binary search. We perform it in the number of
available cloud CPUs (line 2), to find the minimum number
that should be activated to obtain a feasible solution, i.e., a
solution that satisfies the reliability constraint. Binary search
ensures minimum worst-case computational complexity.

Phase 3: walking down the feasibility region. We exploit
Proposition 1, which implies that the minimum cost will be in
this boundary. Although offloading decisions z are continuous,
we sample for a finite number of discretized values: over [0,1]
and in steps of zgran € (0,1], ie., with a granularity zgrqn.
In Section V-B we detail the trade-off that emerges by this
discretization choice, and prove BiQui’s asymptotic optimality.
For each of these 1/zy, values we run a for loop (line 3),
to: (i) increase the activated edge CPUs until the reliability
requirement is met (line 4), (ii) decrease the activated cloud
CPUs while the reliability requirement is met (line 5). If the
current configuration is better than the provisional one, we
update the latter (line 6). Lastly, we update all the explored
configurations £ that are optimal for every offloading decision
z (line 7 in Alg. 1).

B. Correctness, Computational Complexity, and
Approximation Properties

We now discuss BiQui’s correctness, computational com-
plexity, and we finally prove its asymptotic optimality.

Algorithm 1 BiQui
Input: Granularity 24, for partitioning offloading space,
number V of vehicles, target delay 7, reliability require-
ment Pg
Qutput: number zy and yg of CPUs to be activated at the
edge and the cloud, offloading policy 2y, Set £ of explored
points in the feasibility boundary
1: Initialize: zp = 1,290 =0 and £ = ()
2: Binary search on y using our M/I'/k approx. in eq. (9)

yo = arg ming=1,....c{K(V,20,9,20)P(D; < T) > Pg}

3 forz=1, ..., 1z do
while (x,y,z) not feasible & x € {0,..., E—1} do
X=x+1

5: while (x,y-1,z) feasible and y € {1,..., C} do y=y-1

6: (if I)((V,x,yw) < K(V, 10,90, 2) then (29,0, 20) =
x7 y7z

7: if (x,y,7) feasible then £ =& U {(z, vy, 2)}

8: end for

Correctness. BiQui provides a correct (i.e., feasible) solu-
tion for Problem 1. The reliability requirement imposed in
eq. (1) is ensured by Line 2. The upper and lower bounds
on the available resources are ensured in lines 4 and 5. The
offloading decision z is guaranteed to lie with in [0,1] because
of the for-loop range in line 3.

Computational complexity. We examine the computational
complexity of each step of the algorithm, and then conclude
to BiQui’s total computational complexity. Phase 1 has a time
complexity of O(1). Phase 2 has O(log C) (line 2). Note that
Ineq. (1) captures the URLLC requirement and its satisfaction
is required for feasibility. It involves probability, but our search
is not probabilistic: It is a binary search over {0, 1, 2, ..., C},
where C the max number of CPUs at the cloud, with O(log
C) worst-case complexity. Every query of the binary search
sees if all constraints are satisfied, including (1). Phase 3 is a
for-loop with 1/z,,, iterations. Although lines 4-5 are two
while-loops nested within it, the total number of times that
they will run is bounded from the number E and C of max
available servers at the edge and at the cloud. The reason is
that these lines increase/decrease the number of used resources
at the edge and the cloud, respectively. For lines 6 and 7, the
complexity of the action to be taken should the condition be
positive is O(1), and it will be run 1/zy,,, times. Thus, in total,
for Phase 3 we have O(E)+O(C)+O(1/zyan) = O(E+C+

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

274 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

1/2gran). That is, the total computational complexity of BiQui
equals O(log C + C + F + Y zgun), i.e., O(C + E + 1/ zg001)-
Asymptotic optimality. Let Kopp(V,z*, y*, 2*) be the
cost achieved by the optimal solution of Problem 1 and
Kpigui(V,,y,) be that achieved by BiQui. The computa-
tional complexity of the optimal solution is high, as it requires
exhaustively searching the entire solution space. By changing
the granularity zgrq, of partitioning of the decision space for
the offloading decisions z, we can create a trade-off between
the computational complexity of BiQui and how much it
approximates the optimum solution. It holds that:

Proposition 4: Given the CDF of the sojourn time of tasks
in the queuing system, BiQui is asymptotically optimal
w.r.t. the offloading decisions z. That is,

lim 0 KBz’Qui(V,z,y, Z) = KOPT(75 SL'*7 y*v Z*) (12)

Zgran—>

The sojourn time CDF ensures that the reliability require-
ment can be handled accordingly. For scarce sojourn time
approximation, both the optimal solution and BiQui will devi-
ate from the respective solutions under perfect approximations.

We provide the proof for Proposition 4 in Appendix C.

Remark: Proposition 4 states that BiQui will be optimal in
terms of cost as long as zgrqn — 0, i.e., no optimality gap
exists for BiQui. The exact value of zgrqn in practice is a
choice of the application provider (or to whoever uses BiQui),
who may want to trade cost for computational complexity. We
discuss this also in Fig. 10 and Section VII-D. In Proposition 4
the sojourn time CDF is input to BiQui, being either our
approximation of Proposition 3 or exhaustive M/I'/k simula-
tions. Hence, both sides of the equation use the same sojourn
time CDF. If BiQui used the (unknown in practice) M/T'/k
sojourn time CDF, it would be optimal. Using our sojourn
time approximation, BiQui activates +1 CPU since, as shown
by the KS test and experimental evidence, our sojourn time
approximation is conservative. Note that, as we proved above,
regardless zgran, safety will always be ensured for BiQui from
constraint (1) in line 2 of Alg. 1, thus guaranteeing to ensure
the safety requirements.

BiQui’s adaptability to traffic changes. Although BiQui
is a static algorithm designed for fixed traffic it is executed
periodically in practice to adapt to inevitable traffic variations.
As discussed in Section VII-D, we run BiQui every 5 minutes,
matching the granularity of our real-world traces. If finer-
grained data is available, BiQui can run more frequently,
improving its responsiveness. The main limitation on adapt-
ability is computational complexity. We prove that BiQui’s
complexity is upper-bounded by O(C + E + 1/zgran), Where
C and E are the number of CPUs at the cloud and edge,
respectively, and zgrqn is the decision granularity indicating
linear complexity in system parameters. Execution time is very
low in practice: on a 12th Gen Intel Core i7-1260P, it ranges
from 6.29 ms to 119.19 ms, depending on zgran and vehicle—
cloud RTT. See Table VI and Section VII-D for details. We do
not address triggering mechanisms for executing BiQui outside
its periodic schedule, as these are covered in the drift detection
literature and are beyond the scope of this work.

We now proceed with the study of dynamic scenarios.

VI. DYNAMIC SCENARIOS: PROBLEM FORMULATION AND
ALGORITHM ADAPTATION

Since continuously switching on/off a CPU might dra-
matically shorten its lifespan and substantially increase
maintenance costs [21], we now study a dynamic scenario
and define a swap-preventing problem to be solved after
the V2N-COCA, and we design an algorithm to solve
the swap-preserving problem. We first present additional
model considerations, then proceed with the swap-preventing
problem formulation, and we conclude with our algorithm, its
computational and correctness properties, and a toy example
that makes it clearer.

A. Slotted Time and Swap Tolerance Parameter T

Let time be slotted, and fix the number of vehicles V(¢)
within each slot ¢, but let it vary among slots t = 1, 2, ... This
results in time-varying traffic and, thus, varying computing
load, A(t) = A, V(). This change in the input when solving
Problem 1 may result in a very different CPU activation policy
between slots 7—1 and 7. Although this may be optimal in
terms of cost, it is not in terms of the lifespan of CPUs.

We define a tolerance parameter 7 > 0 in order to
control the difference in the cost obtained without and with
accounting for the change of the activation status of CPUs,
i.e., by solving Problem 1 and by additionally considering the
swap-preventing aspect, respectively. The tolerance parameter
introduces a trade-off to the problem in the total cost to
be payed and the difference in activation decisions: When
7 = 0, the tolerance to the allowed difference in the cost
is zero, which essentially implies that we will not account
for the swap-preventing aspect and we will proceed with
the (de)activations that are dictated by BiQui after solving
Problem 1. On the other hand, as the value of the parameter
increases and 7 — +o00, more costly solutions are allowed as
long as they do not change the activation status of the CPUs.
In the following we present the swap-preventing problem
formulation and analysis.

B. Swap-Preventing Problem Formulation and Analysis

Our aim is to minimize the changes in the activation status
of the CPUs, provided that it is convenient in terms of cost.
For example, consider that the edge and the cloud costs are
the same, and that all the load is being sent to y(r—1) = 10
cloud CPUs during slot t—1. Let a demand increase occur
in the following slot, i.e., A(t) > A(¢t — 1), and let the
optimal solution in terms of cost be to send all the load to
the edge, i.e., (x(7),y(f))=(10,0). An intuitive explanation for
this is that lower Round-Trip-Times (RTTs) to send the traffic
to the edge instead of the cloud would compensate for the
higher service times therein. However, this would imply a
large CPU deactivations at the cloud and CPU activation at
the edge, i.e., Ix(t)—x(—1)I+ly(®)—y(&—1) = 10 + 10 = 20
CPUs whose activation status will change from slot 7—1 to
slot . When taking into account the CPU lifespans and the
additional activation delays that in reality CPUs have, it may
be better to use an additional CPU at the cloud and none at
the edge, i.e., x(t) = 0 and y(¢) = 11.

We formulate the above in the following problem:

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES 275

Problem 2 (Swap-Prevention Problem): Let xz*(t) and
y*(t) be the CPU activation decisions at the edge and at the
cloud, respectively, and z*(t) be the offloading policy after
solving Problem 1. Let x(t) and y(t) be the CPU activation
decisions at the edge and at the cloud, respectively, and z(t)
be the offloading policy to be taken in order to prevent CPU
activation swaps between slot t — 1 and slot t.

Then, we formally aim at:

x(t)gl(itriz(t) z(t) —2(t = D[+ [y(t) —y(E - 1) (13)
s.1.
(K (2(t),y(1), 2(1) = K(z*(t), y*(¢), 2" (D)) _
K(z(t),y(t),2(1)) B
Eq. (1), (7), (8) (14)

The objective function in (13) captures the sum of the absolute
number of CPUs whose status will need to change. Ineq. (14)
bounds by T the cost difference up to which the system is
allowed to minimize the CPUs’ change of status. Regarding
egs. (1), (7) and (8), they are the same as in Problem I, and
their rationale and interpretation as well. Swap-Prevention
Problem: Structural properties. We focus on the relation of
the objective function in (13) w.r.t the activation decisions x(t)
and y(t), on the cardinality of the feasibility region. Regarding
the objective function, it holds:

Proposition 5: The objective function of Prob. 2 in eq. (13)
is non-monotone w.r.t. the activation decisions x(¢) and y(z).

We provide the proof for Proposition 5 in Appendix D.

Although the objective function in eq. (13) is non-monotone
w.r.t. activation decisions, the cardinality of the feasibility
region of Problem 2 is monotone increasing w.r.t. the tolerance
parameter 7. Indeed, in Appendix E we prove that:

£ @t =Dy =1)

20 [@=%¢ . . -
'3 "”!' Q
5 Uy l
=10 "l 1
T e !!‘
5H €(0.03) 'h! 1
0 5 10 15 20 25 =
y(t) =

Fig. 5. Feasibility set 2 and ©/(7) of Problem 1 and Problem 2 respectively,
forr € {0.03,0.12}. The Manhattan distance between the solution at time
t — 1(black dot) and the minimal cost solution at time ¢t (z*(¢),y*(t)), is
42, while it is only 3 between the first and the activation (z,y) = (3, 20),
which minimizes CPUs waps.

Algorithm 2 Min-Swap

Input: Tolerance 7, cloud and edge CPUs x(¢ — 1),y(t — 1)
activated during previous slot, current load (%), Zgran,
current CPU and offloading decisions z*(t), y*(t), 2*(t)
of BiQui, and the boundary set £(t) explored by BiQui
for Problem 1 for slot ¢.

QOutput: CPU activation and offloading decisions x(¢),y(),z(t)

for slot ¢
Q=0
2: for (z,y,2) € £(t) do
3 fory €{y,...,C} do
4: 2=z €{l,..., Y zgan }:(x, ¥, 20) is feasible
5: Q=QuU{(z,y,2")}
6: end for
gt K (@.y.2)= K (.57 ")
8: Find Q'(7): = {(z,y,z) € Q: : 7K(I,y,z)7 . < T}

9: (x(8), y(1), 2(1)) =

arg min(m’y’z)eﬂ/(ﬂ
{le —2(t =Dl +ly -yt - DI}

Proposition 6: Let (1) be the set of configurations from
Problem 1 whose cost differ less than a 7 percent from the
optimal solution. Let 71,70 > 0 two tolerance parameters
for Problem 2. Then, for the respective feasible regions it
holds that:

1 §T2<=>Q/(T1) QQ/(TQ). (15)

Intuitively, Proposition 6 states that the feasible set /(1)
of Problem 2 contains more points as we increase 7. This
is because as T increases we accept more solutions from
the feasibility set) of Problem 1, because we accept also
more expensive in terms of operational costs solutions. As an
example, in Fig. 5 we plot the feasible space for the specific
parametrization described in its legend. In this case, £/(0.03)
contains only 7 feasible points, while ©/(0.12) contains 70
points (of which 7 are those contained in ©/(0.03)).

CPU switching costs. In Problem 2 we aim at minimizing
switching on/off CPUs. It is easy to extend the problem
formulation to consider the cost of switching on a CPU at
the edge/cloud v,y > 0 and switching off a CPU at the
edge/cloud ¢, ¢y > 0. In particular, for [z]T = max{0,z},
one can choose the following objective function

U(a(t),z(t = 1),y(t), y(t = 1))

= vglz(t) — z(t — 1)]+ + ¢glz(t —1) — :l:(t)]Jr
+ryly(t) — y(t = DI + oy ly(t — 1) — y(1)]

to minimize the long-term CPU switching costs. Note that
considering unitary costs vy = vy = ¢z = ¢y = 1 results in
Problem 2. We remark that any instance of Problem 2 using
objective function (17) shares the same structural properties,
as discussed in Appendix F.

(16)

C. Min-Swap Algorithm

We aim to minimizing the number of CPUs whose activation
status would change from slot t+ — 1 to slot ¢, based on the
decisions of BiQui for slot z. The Min-Swap algorithm that
we propose takes as its input the outputs of BiQui, i.e., it
is a routine that is executed after BiQui solves Problem 1.
That is, we first invoke BiQui with the new load A(¢) —
respectively V() — and obtain the asymptotically optimal in
terms of cost solution z*(t), y*(t), 2*(¢) and the boundary set
& for Problem 1. Then, we invoke Min-swap. We present its
pseudocode in Algorithm 2. Min-swap consists of three steps.

Step: 0. Given the boundary set £ explored by BiQui for
Problem 1, Min-Swap builds its feasibility set). Specifically,
the loop in line 1 checks every configuration in the boundary £

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

276 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

and increases the number of cloud CPUs to 3’ < C. For each
edge/cloud CPU pair (z,y'), Min-Swap runs a binary search
on the offloading decision z to find a feasible configuration
(z,y’,2") for Problem 1 (Lines 1-7 in Alg. 2).

Step 1: Starting from the feasibility set {2 from Step 0, find
the feasible set (1) for Problem 2 as:

() = {(x, y,z) € Q:

K (2,y,2) = K(z*(1), y* (1), 2" (1))
K(z,y,2)

< T}. (17)

The feasibility set Q'(7) consists of all configurations
(z,y,2) € Q whose cost differs, at most, a 7 > 0 percent
with respect to the optimal solution (line 8). Due to the
monotonicity of the operational cost in eq. (5) w.r.t. activation
decisions (Proposition 1), starting from the boundary £ of
Problem 1 allows to find faster the feasible region Q/(7) of
Problem 2.

Step 2: Find the Min-swap solution x(t),y(t),z(f) searching
at /(7). That is, set x(1),y(1),z(f) to

arg ming, y e/ (r)ilr —2z(t =D+ ly —y(t - 1)} (1)

That is, Min-swap selects among such configurations ' (7) the
one minimizing the number of CPUs whose activation status
will change (line 9).

D. Min-Swap: Correctness and Computational Complexity

We now discuss the correctness and computational com-
plexity of the Min-Swap algorithm.

Correctness. Min-Swap produces solutions that are correct,
i.e., both feasible and ensuring the safety requirements of V2N
applications. Indeed, eq. (14) is ensured through Line 1 in
Alg. 2. Moreover, because Min-Swap searches its solutions in
Q, also eqs. (1), (7), (8) are ensured from Line 4 of Alg. 2.

Computational Complexity. The computational complex-
ity of Min-Swap depends on: (i) the size of the feasibility
region {2 of Problem 1; and (ii) the granularity in the offloading
decisions zgrqn. Building €2 in line 1 takes o - E -
log(1/zgran)) because for every edge/cloud CPU pair (z,%’),
line 4 executes a binary search on the offloading decision
to find a feasible solution (z,y’,z’). Then, in line 8, Min-
Swaps check every solution of the feasibility region 2 to
check whether they excess the cost of the optimal solution by
a 7 percent. This operation is linear on the size of €2, ie.,
O(C-E). Lastly, in line 9 Min-Swap selects the solution from
'(7) minimizing the CPU swap. By implementing (1)
with a heap data structure [22] and using the min CPU swap
as sorting criteria, we ensure the best solution is found in
O(C - E - log(CFE)). This is because we look for the min
CPU swap solution in a space whose size is |/ (7)] < CE,
and the heapify operation takes O(log(C - E)) run-time for
each element in such space. Overall, the worst-case run-time
of Min-Swap is governed by either building €2 or looking for
the minimum CPU swapping solution. That is, Min-Swap run-
time is O(C - E - log(min{C - E,1/zpan})).

T=0 >
A(t) = 0.84 O«
" = O !,
P _ms cloud ()™
At —1) =08 < = L0
o~ edge (.
% G cloud) = o
[mQ- -] =110k
Edge L‘)\(t) gt
[previon seup| fh B cowd
previous setup E 1 g
i
edge
Fig. 6. With same edge/cloud costs, when the load A changes from 0.8 to

0.84 [pkt/ms] the best is to turn off the y’ = 20 CPUs at the edge (left) and
turn on x = 22 CPUs at the cloud (right solid). With tolerances 7 > 0, BiQui
selects solutions minimizing the CPU (de)activation (right dotted).

E. Toy Example: BiQui vs. Min-Swap in Dynamic Scenarios

Now we present an example of BiQui resulting in a large
number of CPUs whose activation status would change from
slot to slot if BiQui is used in a real-time. In our example,
this happens due to changes in the total computational load).
Then, we show how our Min-swap algorithm, through solving
Problem 2 given a tolerance parameter 7, prevents this effect.

Toy example setup. Let C = 40 and E = 20 be the
maximum available CPUs at the cloud and at the edge,
respectively. Let the RTTs and the subscription/usage costs for
the edge and the cloud servers be as in Fig. 2. In Fig. 6 we
illustrate the optimal solution of Problem 1 for load A(t—1) =
0.8 (left), and both and several feasible solutions for (%)
(right).

Change in load leads to high CPU (de)activations. When
A(t — 1) = 0.8, the optimal solution in terms of cost is to
send all to the edge, ie., (z*(t —1),y"(t —1),2*(t — 1)) =
(20,0, 0). Without loss of generality, let us assume that this is
the decision taken by Min-Swap as well during slot ¢t — 1. If
the load increases to A(¢) = 0.84 it cannot be handled entirely
at the edge, because there are not additional available CPUs
therein to activate. It could be intuitively expected that the best
action to take is to turn on additional CPUs in the cloud and
set (x(2),y(1),z(r)) = (20,3,0.05), because of its cheaper price
compared to the additional CPU at the edge. However, Fig. 6
shows that the best solution in terms of cost is to turn off all
edge CPUs and send all the computational load to the cloud,
ie, (z"(t),y*(t),2*(t)) = (0,22,1). This is a result of the
multiplexing gains at the cloud, which will reduce the waiting
time and thus will result in the demand being dispatched with
less CPUs when all is processed at the cloud. The above results
in |z*(¢t) — z*(t —)| + |y*(¢) — y*(t — 1)] = 42 CPUs
(de)activations.

What Min-Swap offers. To prevent the high (de)activations
explained above, the Min-Swap algorithm searches for solu-
tions in the feasible space €(7) of Problem 2, whose
cost differs at most 7 percent from the optimal cost when
solving Problem 1. In Fig. 6 (right) we illustrate some of
the solutions contained in Q(7) for 7 = 1/10. Among
them all, Min-Swap selects the candidate solution that min-
imizes the CPU (de)activations, which turns out to be
(x(2),y(1),2(1))=(20,3,0.05). As a result, the tolerance 7 = 1/10
only (de)activates |z(¢) —z*(t — 1)| + |y(t) —y*(t — 1)| =
3 additional CPUs, i.e., 92.86% less (de)activations compared

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES

OffAll SNC I OPT o

OffAll SNC HEEN OPT © LocAll KING @
LocAll KING @ AVG BiQui m—
AVG BiQui m— 1.00
8
0.80
",_7; 7
o 6 0.60
> Nn 40 3
£ 3 ! g
53 G 0.20 EE
2 o3 %
= Ss Sd
1 o5 0.00
0 ow 0 0.5 1 15 2 25
0 0.5 1 1.5 2 2.5
A [pkt/ms]

A [pkt/ms]

(a) Normalized cost vs. A (b) Offloading decisions z

vs. A
OffAll SNC HEEE OPT ©
OffAll SNC HEEN OPT © LocAll KING @
LocAll KNG @ AVG BiQUI
AVG BiQui = 0.25
35
o 3 - 0.20
3 25 0.15
o, Cannot offload
. 0.10 to far cloud
£ 15 Cannot offloar
5 1 to far cloud 0.05
=z
05 0.00
0 0 0.5 1 15 2 2.5
0 05 1 15 2 25
A [pkt/ms]
A [pkt/ms]

(f) Offloading decisions z

(e) Normalized cost vs. A bs. \

277

OffAll SNC HEEN OPT © OffAll SNC HEE OPT ©
LocAll KING @ LocAll KING @
AVG BiQui — AVG BiQui m—
20 40)
35
o %]
B1s g D 30
o 3 o g
O 2 O]
o 10 X o° 20 e
o b=l 3 15 o
B 5 3 219 o3
2 2
© O R
0 0 ou
0 0.5 1 1.5 2 2.5 0 0.5 1 15 2 2.5
A [pkt/ms] A [pkt/ms]

(c) Edge active CPUs x vs. A (d) Cloud active CPUs y vs. A

OffAll SNC e OPT o offAll SNC EEEN OPT o©

LocAll KING @
O m— LocAll KING @
20 VG BiQui AVG BiQui
0.25
n 1%
3 2 0.2
O Q015
o - Cloud too far
o 10 Edge cannot 5 01 ‘cannot meet delay
kel process more o
a 5005
5 0
0 0.5 1 15 2 25 0 05 ! L3 2 23
A [pkt/ms] A [pkt/ms]

() Edge active CPUs z vs. A (h) Cloud active CPUs y vs. A

Fig. 7. Impact of varying server RTT. Edge RTT: D, = 18.2ms. Cloud RTT: D, = 22.8 ms (top); and Do, = 49.1ms (bottom). All RTTs
are from [18]. Target delay: 7 = 100 ms. Reliability requirement: P = 99.999%.

OffAll KING @ OPT o OffAll KING @ OPT o
LocAll AVG LocAll AVG
SNC B BiQuj e > SNC B BiQui e
© 200 © 160 1y
T 180] D 140 { ¢ \
QA 160 ‘(:‘ [= s 0'._\‘
140 o ﬁ’\ 9 100 Target Delay
Q1201 arget veis) S AT ———
5 80 o
g 60 o jg
o 40 e
o 20 3 20
T 2 9
w 0 0.5 1 1.5 2 2.5 (&} 0 0.5 1 1.5 2 2.5
A [pkt/ms] A [pkt/ms]
(a) Delay at edge - low cloud (b) Delay at cloud - low
RTT cloud RTT

OffAll KING © OPT o OffAll KING @ OPT o
LocAll AVG LocAll AVG
SNC BiQui we— > SNC BiQui me—
©200 =
@ 180
[a]
S1ir | Wiy
o 120 m
S 100
g gg Target Delay
133 40
2%
(O] 0 0.5 1 15 2 25
A [pkt/ms] A [pkt/ms]
(c) Delay at edge - high cloud (d) Delay at cloud - high
RTT cloud RTT

Fig. 8. 99.999-th percentile of the delay experienced by a ToD service [3] when it is processed at the edge and cloud. For the edge: ngp = 18.2 ms. For

low cloud RTT: DS

brop = 22.8 ms. For high cloud RTT: Df

prop
to the optimal solution, at the expense of being at most 10%
worse in terms of cost.

F. Min-Swap With CPU Switching Costs

We remark Min-Swap is a suitable algorithm to solve
Problem 2 considering CPU switching costs, i.e., taking
the objective function (17). It suffices to replace line 9
by arg ming, y yeq iU (2, 2(t —1),y,y(t — 1))} ,ie., t0
return the explored feasible solution with smallest CPU
switching cost. Still, the loops in lines 2 and 3 must remain
given the non-monotonicity of U(x(#),x(t — 1),y(#),y(t — 1))
(see Appendix F). That is, the Min-Swap Alg. 2 must still
leverage the boundary set £(t) and exhaustive search on the
number of cloud CPUs. The above description ensures Alg. 2
correctness while considering CPU switching costs. Specifically:
(1) the reliability requirement (1) is met for line 2 remains; (ii)
the CPU activation (7) and offloading requirements (8) are met
for line 4 remains; and (iii) the tolerance requirement (14) is
also met for line 8 remains as well.

VII. PERFORMANCE EVALUATION

We assess BiQui‘s performance using real-world traffic
traces, pricing plans currently used in the market, and prop-
agation delay setups drawn from the literature. We consider
reliability constraints imposed by 5G-Americas [3] for V2N.

= 49.1ms [18].

A. Setting and Traces

Setting. Unless otherwise specified, we consider zgran =
1072 granularity, target delay T = 100ms, and Pg =
99.999 % reliability [3]. We consider propagation delays
from real-world providers [18]: edge Round Trip Time (RTT)
Dfop = 18.2ms and cloud RTT DS, = 22.8ms. We
assume that the vehicular H.264 video flows are processed
on AWS EC2 G4 instances, optimised for intense video-
processing, and with pricing the hourly cost of EC2 G4 [17]:
cge = 0.0052, ¢c1, = 1.363$/h. Similarly, we consider the
EC2 G4 instances price in Regional premises as reference
for the cloud pricing, ie., we take cg. = 0.0052,c1, =
0.94 $/h. Unless otherwise specified, the computing resources
at the edge and at the cloud are considered to have the
same computational capacity, and therefore what essentially
distinguishes the edge from the cloud is the number of
available CPUs [18, Sec. 2] and their distances to the vehicles.

Real-world Traces. The traffic data [23], recorded by
6 road probes in Torino, includes traffic flow measurements
aggregated over 5 minutes. Fig. 13a shows the geographical
distribution, with streets represented by points sized according
to their maximum traffic intensities. The spots correspond to
Corso Belgio, L. Einaudi, Giambone, G. Ferraris, G. Cesare,
Francia and G. Agnelli. The impact of the prots’ size on the
results is that the larger is the spot, the larger is the traffic

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

278 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

demand of the respective street, and thus its demand for CPU
resources. Fig. 13b depicts the traffic flows over the streets
for one entire day. The aggregated demand achieves peaks
A < 2.5pkt/ms (Fig. 13b), and we thus for our evaluation
consider demands A\ within [0,2.5].

B. Benchmarks

We compare BiQui performance against:

OPT: performs an exhaustive search on (x,y,z) simulating
M/T'/k queues. Computationally inefficient (needs hours to give
a solution), but provides the best achievable performance as
benchmark.

AVG: offloads and scales to meet, on average, the delay
requirement V task i, i.e., E[D;(V,z,y,2)] < T [24].

KNG: it estimates the average waiting time using Kingman
law of congestion [25]. It decides (x,y,z) so the waiting time
and P percentile of the I service time S(Ip,) meet the target
delay, i.e., E[W(z,y,2)] + S(lp,) < T.

SNC: it adapts [26] to account for I' distributed ser-
vice times using Stochastic Network Calculus (SNC). As
in [27], [28], we use affine arrival/service curves [29] to bound
the arrival/service excess/deficit and take (x,y,z) to meet target
delay T and reliability P constraints — see Appendix G.

OffAll: it offloads all tasks to the cloud z = 1 until it
exhausts cloud CPUs. Then, it sends tasks to the edge.

LocAll: it process tasks locally at the edge z = 0 until it
exhausts edge CPUs. Then, it offloads tasks to the cloud.

C. Results

We evaluate BiQui against the benchmarks above by doing
a sensitivity analysis on the problem’s parameters, and over
the real traces presented above. We investigate the impact
of varying Round-Trip-Times (RTTs), of the target delay 7,
of the granularity 247, of the offloading decisions, of the
reliability requirement P, of varying the subscription and
usage costs over the total cost, and of the heterogeneity of
the computing resources. We also evaluate BiQui over more
dynamic scenarios, and finally we study BiQui’s execution
time under various scenarios.

The impact of varying RTTs. We consider high and low
Round-Trip-Times (RTTs) for cloud servers. Fig. 7 depicts
normalized costs, offloading decisions z, number of activated
edge-cloud CPUs, vs. different load A\. Our main observations
and insights per scheme are:

OPT: The max. supported computing load is up to
2.5 pkt/ms for low (Fig. 7a) and up to 0.75 pkt/ms for large
(Fig. 7e) cloud RTTs. High RTTs at some point lead the
total delay to exceed the target delay 7, leading to infeasible
solutions, as the reliability requirement is not met anymore,
thus indicating the system’s limits.

BiQui: it matches the costs and decisions taken by the OPT,
for both smaller and larger cloud RTTs. This happens for all
the possible computing loads except for those at the very high
limit BiQui, i.e., for A — 2.5 for low RTTs (Fig. 7a) and for
A — 0.75 for large RTTs (Fig. 7b). However, the reason for
this is the conservativeness of the sojourn time approximation
of Proposition 3 (discussed above).

AVG: it is infeasible for all RTTs. From Fig. 8, the 99.999%
delay experienced by the tasks processed at the edge or cloud

TABLE V
COMPARISON (a7, ag) OF BIQUI’S DECISIONS x,y,z AND OBTAINED COST
K UNDER TARGET DELAY 77 ms (a1) AND 100 ms (as), FOR DIFFERENT
LOAD A. RELIABILITY: P = 99.999%, PROPAGATION DELAYS:

Dfrop = 18.2ms, Do, = 22.8ms [18]
X (pkt/ms) | x (CPU) y (CPU) z (%) K ($/hour)
1 (0, 0) (31,26) (100, 100) (2.71, 2.70)
1.5 6, 0) (40, 36) (91, 100) (4.13, 3.99)
2.25 (-, 16) (-, 40) (= 74) (-, 6.69)

exceed the T = 100 ms target delay. This is the main drawback
of the existing approaches in the literature, e.g., [24], which
fail to capture the strict latency and reliability requirements of
V2X services.

KNG: only finds solutions under small RTT and A = 2.376
(see Fig. 7a-d). This is due to the decreasing saw-tooth delay
behaviour (see Fig. 8). KNG turns out to be a loose and
optimistic approximation of the 99.999% delay, and it reduces
the error as)\ increases. For accommodating demands A > 2.5,
CPU setups C>40 are needed.

SNC: it appears too conservative. For low RTT (Fig. 7a-d),
it eats up all CPUs with loads A < 0.71, not finding feasible
solutions for higher loads. For high RTT (Fig. 7e-h), it never
finds feasible solutions. It provides rather loose bounds for the
reliability P, hence pitfalls into resource over-provisioning.

OffAll: its behaviour highly depends on RTTs. From
Figs. 7a-d (low RTT) it matches OPT, as cloud is cheaper.
However, in Figs. 7e-f (high RTT), feasible solutions are not
possible due to delay violations stemming from high RTTs.

LocAll: is an optimal approach with large cloud RTT (as
in Fig. 7e-h), for the only feasible solution is to locally process
all tasks at the edge. Upon small cloud RTT (as in Fig. 7a-d),
it leads to suboptimal deployments because it does not use
first cheap CPUs at the cloud.

The impact of the target delay, 7. We investigate on
the lower possible target delay that BiQui could handle. This
allows us to reveal the potential of our algorithm, while being
relevant for more stringent scenarios that may be considered
in future 6G applications. In Fig. 9 we depict the normalized
cost, our decisions (CPU activation x at the cloud and y at the
edge, and the offloading policy z), vs. the generated computing
load A. In particular, we depict BiQui for two different target
delays: T = 100 [ms] and T = 77 [ms]. The latter is the
minimum target delay for which BiQui can leverage the cloud,
and it is a limit imposed by the system and not by BiQui’s
performance. That is, with target delays 7<77 [ms] in our
setting, it is impossible for any algorithm to offload traffic to
the cloud while meeting the 99.999% reliability requirement.
The intuition behind this is as follows. The cloud RTT for
the experiments is 22.8 [ms], hence the sojourn time cannot
consume more than 77—22.8 = 54.2 [ms] to meet the target
delay. However, it is impossible that the sojourn time remains
smaller than 54.2 [ms] with a 99.999% probability.

The impact of the offloading granularity, z.,. We use
the same experimental setup as that for low cloud RTT. Fig. 10
shows BiQui for zgran = {0.01,0.1,0.2,0.3,0.4} vs. varying
computing load A. See that for zgran = 0.01 BiQui matches
OPT, confirming Proposition 4. For A < 1.73 BiQui sends

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES

8 1.00
5| BiQui 100[ms] m— BiQui 100[ms] =
% BiQui 77[ms] 0951 'BiQui 77[ms]
o ° 0.90
@) i 0.85 early Edge /
O 2 0.75 o050
z 0.70
0 0.65
0 0.5 1 1.5 2 2.5 0 0.5 1 15 2 25
A [pkt/ms] A [pkt/ms]

(a) Normalized costs vs. A (b) Offloading z vs. A

279

20 40

0 H g
H

2" EE S z 2 o
O H (]
o o i- 5 20 1 /S
o 3 15 X
el 2 10 1
w BiQui 100[ms] == (SR 1Qui 100[ms] =

BiQui 77[ms] 0 BiQui 77[ms] 112 14

0 0.5 1 15 2 25 0 0.5 1 1.5 2 2.5
A [pkt/ms] A [pkt/ms]

(c) Activation x (edge) vs. A (d) Activation y (cloud) vs. A

Fig. 9. We stress BiQui to meet a target delay of 7 = 77 [ms] (dashed) with target delay 7 = 100 [ms] (solid) and reliability requirement P = 99.999%.

Following [18], we use Dgrop = 18.2 [ms] and D]:‘):rop

2gran=0.01 memmm Zgran=0.3
Zgran=0.1 mmmmm Zgran=0.4
OPT ©

2gran=0.01 mmmmm Zgran=0.3
Zgran=0.1 mmmmm Zgr0n=0.4

Zgran=0.2 = 2gran=0.2 = OPT ©

55

4.5
1.65

Norm. Cost
chrNWAEU G N®

0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 25
A [pkt/ms] A [pkt/ms]

(a) Normalized costs vs. A (b) Offloading z vs. A

Fig. 10.
(cloud) for propagation delays [18].

all traffic to the cloud until it exhausts the available CPUs
C = 40. With A > 1.73 BiQui offloads traffic to the edge
(z<1) and turns on edge CPUs. Fig. 10 (c-d) show worse
granularities (e.g. Zgran = 0.4) lead to sudden jumps in
the offloading and additional edge CPUs. Such jumps in the
number of (expensive) edge CPUs are reflected in the cost
increase in Fig. 10 inset. BiQui gives near optimal results
and a smooth offloading for finer granularity zgren — 0,
confirming again Proposition 4. However, finer granularities
lead to larger execution times — see Section VII-D.

The impact of the reliability requirement, P;. We now
lower the reliability requirement of the ToD service from
P = 99.999% to Pg = 99% and Pg = 99.99%, 99.9%,
which is the reliability imposed by infrastructure-assisted envi-
ronment perception and HD map collection [3]. Fig. 11 shows
BiQui performance using a near-cloud topology (Dﬁmp =
22.8ms[18]) to process V2N traffic. Results in Fig. 11b show
the offloading decision z does not change regardless of the
reliability requirement P5. However, with smaller Py BiQui
saves around 2 CPUs at the edge and cloud (see Fig. 11c-d),
thus the subtle cost savings in Fig. 11a inset.

The impact of the heterogeneity of the computing
resources. We now study the effect of having heterogeneus
CPUs at the edge and cloud, by considering that cloud CPUs
have 2x, 4x, 8x and 16x more cycles per time unit than edge
CPUs — i.e., parameter cg in (3) is larger for cloud CPUs.
Hence, cloud CPUs have smaller service time to process a
task s = S(I;). We also assume that edge cloud costs increase
proportionally with the CPU speed, that is, a cloud CPU with
2x more cycles per time unit has subscription and usage costs
2¢0c, 2¢1c. Fig. 12a-d show the impact of having cloud CPUs
with more cycles per time unit vs. an increasing demand .

From Fig. 12a we infer that cheap and slow cloud CPUs
lead to higher costs with A = 4 [pkt/ms]. Specifically, Fig. 12a
inset shows that it is cheaper having 16x faster and more
expensive cloud CPUs than just 2x faster and more expensive

Impact of BiQui granularity zgran. Target delay 7 = 100 ms and reliability P = 99.999%. We use D

= 22.8 [ms] for the propagation delay at the edge and cloud, respectively.

Zgran=0.01 wemmm Zgran=0.

=0.3 Zgran=0.01 wemm Zgry
Zgran=0.1 mmmmm 2gran=0.4
OPT

Zgran=0.1 memmm Zgry
o Zgran=0.2 s o]

55

Zgran=0.2 s—

= -
o o

Edge CPUs

[

0 0.5 1 1.5 2 2.5 0 0.5 1 15 2 25

A [pkt/ms] A [pkt/ms]

(c) Activation x (edge) vs. A (d) Activation y (cloud) vs. A

= 18.2 (edge), DS

brop = 22.8ms

prop

cloud CPUs. The latter case exhausts the 40 and 20 CPUs
available at the cloud and edge — see Fig. 12c-d —, thus being
more expensive. Additionally, Fig. 12a evidences that the cost
difference is not significant when we use 4x, 8x and 16x faster
and more expensive cloud CPUs. Note that turning on fewer,
yet more powerful, CPUs can compensate for their higher cost.

With 8x and 16x faster cloud CPUs, Fig. 12b-c evidences
offloading spikes that lead to on/off patterns in edge CPUs.
The reason is that BiQui finds cheaper solutions turning on
edge CPUs before turning on cloud CPUs that are 8x and
16x more expensive. We recall Proposition 2 to emphasize the
observed offloading spikes are inline to the non-monotonicity
of the cost function.

Last, for a given demand A BiQui turns on less cloud CPUs
when they are faster and more expensive, since less cloud
CPUs meet the target reliability P = 99.999% (Fig. 12d).

BiQui over a day. We assess BiQui performance using the
traffic load of Torino city — see Fig. 13a-b. The used dataset
reports the traffic load of each road (Fig. 13a) every 5 min
and BiQui runs right after each traffic load report. Hereof,
BiQui updates the offloading z (Fig. 13c) and CPU activa-
tion decisions x,y (Fig. 14a-b) upon reported load changes.
Results show that during rush hours (8:00 and 18:00) BiQui
exhausts cloud CPU resources (Fig. 14a) and offloads the
demand to the edge (Fig. 13d and Fig. 14b) to meet the target
delay (Fig. 13c). Leveraging Proposition 3, we evaluate the
offloading z and CPU activation decisions x,y and observe in
Fig. 13c an increase in the experienced average and 99,999
delay percentile during rush hours. Still, BiQui meets the
99,999t percentile of the target delay 7 = 100 ms even during
rush hours. We remark BiQui makes decisions in <120 ms
(see TABLE VI) and adapts the CPU activation and offloading
decisions at the same pace of the traffic load reports. With load
reports each 5 mimutess, BiQui performs 12 updates per hour
and activates 17 edge CPUs as the 18:00 rush hour approaches
(see Fig. 14b inset). Overall, BiQui adapts to load changes

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

280 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

99.999% mm— 99%

99.999% mm— 99%

99.99% 90% 99.99% 90%
8 1.00
~
7157 4 0.95
FU p
2 .lse / / 0.90
O, N 08
£ 3155 355 0.80
o 2 7 0.75
Z 1
o 0.70
1 0.65
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 2.5 3
A [pkt/ms] A [pkt/ms]

(a) Normalized costs vs. A (b) Offloading z vs. A

Fig. 11.

99.999% m— 99% 99.999% m— 99%

99.99% 90% 99.99% 90%
20 40
15 35
[14 [
815 fy 230
o 13 I o s 12
Y p]22 / e 10
20
() 11 /d T 8
(o)) 315
o 10 o 6
w 57 9 o 1o 4
2 2125 225 5 2
o 0 02 04
0 05 1 15 2 25 3 %0 0.5 1 1.5 2 2.5
A [pkt/ms] A [pkt/ms]

(c) Activation x (edge) vs. A (d) Activation y (cloud) vs. A

We vary the reliability requirement and consider P = 99.999, 99.99,99, and 90% imposed to BiQui to meet a target delay of 7 = 100 [ms]

for V2N services. Following [18], we use ngp = 18.2 [ms] and Drﬁmp = 22.8 [ms] for the propagation delay at the edge and cloud, respectively.

oocoo

2x —
Ax —
8x

16x

0 05 1 15 2 25 3 35 4 45
A [pkt/ms]

(b) Offioading z vs. A

Norm. cost

ONBRNRON KOO

z
0000 00O
Cwwonn oo

0 05 1 15 2 25 3 35 4 45
A [pkt/ms]

(a) Normalized costs vs. A

20 40
2x w— 35 2x w—
w0 4x w— 73] 4x w—
D 157 gx 2 307 8
& 16x O 25716x
o 10 20
o 3515
T 5 2 19
w o 5

0
0 05 1 15 2 25 3 35 4 45

A [pkt/ms]
(d) Activation y (cloud) vs. A

00 05 1 15 2 25 3 35 4 45
A [pkt/ms]

(c) Activation x (edge) vs. A

Fig. 12. Impact of the heterogeneity of the computing resources. We increase 2x, 4x, 8x and 16x the cloud CPU computational capacity cg and
ask BiQui to meet a target delay of T = 100 [ms] and reliability P = 99.999% for V2N services. Following [18], we use ngp = 18.2 [ms] and
D;?rop = 22.8 [ms] for the propagation delay at the edge and cloud, respectively. Cloud costs cq, ¢1. increase proportionally with the CPU capacity.
S 85 1
L\ \O , 80 g | LT 0.95
ol . w @ 751 99,999 = o 09
¢ 2 E 15 E 70 avg Ségﬂ 0.85
e y Aana[PKUMS] € > & ® N 08
‘ ' 8 < = o0 = 1500 1800 P
° / © 045 — aggregated o} 55 2
’ .| ® 050 < 05 S e o© 50 i 07 N
< O g g.gg "w' it 3". e W o 45 0.65 rush hours
>/ : (o] 0:65 03:00 09:00 15:00 21:00 4 03:00 09:00 15:00 21:00 03:00 09:00 15:00 21:00
Pa time [hour] time [hour] time [hour]

(a) Torino streets (b) Streets demand

Fig. 13.
service [3] as BiQui changes the offloading decision (d) throughout a day.

TABLE VI
B1Qui EXECUTION TIMES (IN MILLISECONDS) FOR DIFFERENT VALUES
OF THE GRANULARITY PARAMETER 2gran AND TWO RTTS BETWEEN
THE VEHICLE AND THE CLOUD SERVER

Zgran

RTTs ‘ 0.01

0.05 0.1 0.2 0.3 0.4
228 ms | 81.12ms 1772 ms 1272 ms 1291 ms 10.63 ms 7.24 ms
49.1ms | 119.19 ms 25.05ms 21.18 ms 7.89ms 6.67ms 629 ms

and offloads traffic to the edge to meet the target delay during
rush hours.

D. BiQui’s Execution Time

We run our experiments over a 12" Gen Intel Core
17-1260P. Tab. VI shows the maximum observed execution
times of BiQui considering different granularities zgrqn, and
RTTs [18]: near cloud (22.8 ms) and far cloud (49.1 ms).

The impact of 2y, on execution time. The execution time
monotonically decreases with the offloading granularity zgran,
as larger values of zgrqp result into less iterations looking for
feasible solutions — see line 3 of Alg. 1.

The impact of the RTTs on execution time. High RTTs
require more CPUs to process traffic on time and meet the
target delay 7. However, BiQui’s runtime is non-monotone

(c) Average & 99.999 delay (d) Offloading decision z

BiQui over real traces: The traffic demand (b) corresponds to that of five streets from Torino (a). Results show the delay experienced (c) by a ToD

Edge CPUs

Cloud CPUs

1500 1500

15:00
time [hour]

(b) Edge active CPUs

03:00 09:00 15:00 03:00 09:00 21:00

time [hour]

(a) Cloud active CPUs

21:00

Fig. 14. BiQui over a day. CPU scaling over the street demand in
Fig. 13. (b) BiQui adapts to the load changes, which are reported each 5 min
in the dataset.

w.r.t. the RTT — see Tab. VI. Increased RTTs result in
increased execution times for smaller offloading granularity
values, while for the opposite holds for higher ones. We
accredit the different behavior for large granularity values to
the fact that the binary search in line 2 of Alg. 1 terminated
earlier, thus resulting in lower execution time for BiQui.

Take-away. According to Tab. VI, BiQui takes less than
120ms to find the optimal CPU and offloading setup in
the considered configurations. Thus, just one frame risks
violating the ToD URLLC requirement (100 ms) due to BiQui
execution. The rest of the frames in the video flow will meet
the URLLC requirements.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES 281

-
us] 0.05 =005 m 1
1=0.04 ==
4‘7; 0.04 =003 0.8
S 0.03{1=002 0.6{t=0.05 m
<v ©=0.01 N ©=0.04 =
Lo.02 =0 0.4 1 1=0.03
= 1=0.02
1© 0.01 [\ 0.2 1 1=0.01
g, WU o i
0 0.5 1 1.5 2 25 0 0.5 1 1.5 2 2.5
A [pkt/ms] A [pkt/ms]

(a) Relative cost vs A (b) Offloading z vs. A

Fig. 15.

(c) Activation x (edge) vs. A

N
o

0 wn 35
21s z 30
@] O 2511=0.05 m
o 10 5 201 71=0.04 =
<y S 15 1=0.03
T 5 O 1o |1=002
w @) 1=0.01
5 =0
0 0
0.

n

1 15 2 25

A [pkt/ms]
(d) Activation y (cloud) vs. A

A [pkt/ms]

We vary the tolerance 7 of the Min-Swap algorithm in a V2N service with reliability Py = 99.999% and target delay 7 = 100 [ms]. Cloud and

edge costs are equal. Propagation delays are inline with [18]: Dﬁrop = 18.2 [ms] and DSrop = 22.8 [ms] for at the edge and cloud, respectively.

ofll i
0.6
0.4

0.2 1=0.05 m
=0

0 L

15:00 21:00 03:00 09:00 15:00 21:00

03100

09:00
time

(b) Offloading 2

time

(a) Relative cost wrt. BiQui

- 40 = =
R i Rl
5 l | G2 WA
= { L R 0
g s | J J' \ [3 g =005 = l
0 03:00 091‘00 15:00 21:00 03:00 09:00 15:00 21:00”
time time

(c) Edge CPUs x (d) Cloud CPUs y

Fig. 16. Min-Swap (7 = 0.05) and BiQui (7 = 0) over real traces from Fig. 13. The experiment considers a V2N service with 7 = 100 [ms] target delay

and Pg = 99.999% reliability. Following [18], we use Dgrop

E. The Impact of T on Min-Swap’s Performance

In the following, we evaluate the performance of the Min-
Swap algorithm when we change the tolerance parameter 7.
We use the same setting specified in Section VII-A but having
same edge and cloud costs cp. = Ccpe = C1ec = Cle-

The impact of 7 with increasing demand. In Fig. 15
we study the performance of Min-Swap when the demand
increases with time. That is, the 7-th xtick of Fig. 15 represents
the demand A(¢), and A(¢) < A(t+1),V¢. The values in the y
axis of Fig. 15 relate to the solutions x(¢),y(#),z(¢) obtained by
Min-Swap when it receives as input x(r—1),y(t—1) and BiQui‘s
solution for A(¢). That is, for every time step ¢ we feed Min-
Swap with its CPU configuration for the prior time step 7—1.
This mimics the behaviour of running Min-Swap in a scenario
with time-varying load A(¢) that increases.

In Fig. 15(a) we plot the relative cost error, i.e., how much
Min-Swap cost differs with BiQui solution, which is captured
by the left hand side of eq. (14). Results show that the
relative cost error always remains below 7. The relative cost
error presents peaks when the BiQui optimal solution incurs
into large CPU (de)activations. For instance, as discussed
in Section VI-E, with A\(#) ~ 0.8 [pkt/ms] BiQui (r = 0
in Fig. 15(b)) sends all the load to the cloud to get the optimal
solution, thus the peak in Fig. 15(a).

Fig. 15(b-d) evidence that small values of 7 lead to more
oscillations in the offloading and CPU activation decisions.
Such oscillations occur because a demand increase may
lead to optimal configurations z*(t), y*(¢), 2*(¢) with large
CPU (de)activations. Consequently, we have to increase 7
to select more expensive configurations that minimize the
CPU (de)activations. In particular, Fig. 15(b-d) show that the
tolerance should increase to 7 = 0.05 so that Min-Swap
operates without oscillations. Moreover, with 7 = (.05, the
offloading — see Fig. 15(b) — smoothly increases as the demand
goes up, thus Min-Swap prevents oscillations in the CPU
(de)activations — see Fig. 15(c-d).

= 18.2 [ms] and D,

srop = 22.8 [ms] for at the edge and cloud, respectively.

The impact of 7 on real-world traffic data. We now
analyze the performance of Min-Swap algorithm by using
one day of real data from the Torino traffic trace described
in Section VII-A. For the sake of readability, in Fig. 16 we
illustrate just the performance of Min-Swap with 7 = 0.05
and the performance of BiQui, i.e., Min-Swap with 7 = 0. As
in Fig. 15 experiments, Min-Swap uses the solution from the
prior timestamp x(¢—1),y(z—1) to find the best configuration
for the new load A(t).

Fig. 16(a) shows that the relative cost error for Min-Swap
7 = 0.05 always remains smaller than a 5%. Moreover, during
the early morning hours there is no relative cost error for there
is barely road traffic — recall Fig. 13(b).

Fig. 16(b-d) plot the decisions x(#),y(¢),z(t) taken by BiQui
(r = 0) and Min-Swap (7 = 0.05) over time. Fig. 16(b)
shows that BiQui leads to severe oscillations in the offloading
decisions before 6:00 and around 21:00. The offloading oscil-
lations before 6:00 result in 5 to 10 CPU swaps in Fig. 16(c-d),
and the oscillations around 21:00 result in 20 to 25 CPU
swaps. Note that Min-Swap with 7 = 0.05 does not incur
into prominent CPU swaps before 6:00 nor at 21:00. Indeed,
Min-Swap with 7 = 0.05 presents a smooth tendency in both
offloading and CPU activations.

Min-Swap with 7 = 0.05 ends up having less CPU swaps
over time than BiQui. To measure this, Fig. 17(a) shows the
cummulative CPU difference with respect to BiQui:

2 lz(®)—e(t=D)I+y () —y(t=1)I/S3, |a* (1) —z* (t—1) [+]y* () —y™ (t—1)|
(19)

with 2*(t),2(t) referring to the decisions of BiQui and
Min-Swap with a given 7, respectively. In Fig. 17(a) we
see that in one day Min-Swap ends up having <10% of
BiQui CPU swaps Moreover, larger values of 7 decrease the
accumulated CPU swaps during the day. Indeed, the difference
of accumulated CPU swaps decrease as time progress.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

282

0,016
Jo.014

.0.012
€ o.01
3 - go.oos
30.006
50004
£0.002

=0.05 == T1=0.02 —
=0.04 = T=0.01
=0.0

CPU Cumm. Diff.

03:00 09:00 15:00 21:00 03:00 09:00 15:00 21:00

time time

(a) Cumulative CPU swaps (b) Cumul. cost difference

Fig. 17. Cummulative CPU and cost difference between Min-Swap and
BiQui in Torino traces. We try Min-Swap with different tolerances 7.

The counter back of having 7 > 0 is to end up using
more expensive solutions, i.e., solutions with more CPUs. In
Fig. 17(b) we measure the cost cumulative difference:

¢ K (@(1),5(1),2(£) =K (2™ (1),5™ (1,2 (1) /5, K (a* (1),5* (1),2* (1)) (20)
with 2*(t), z(t) referring to the decisions of BiQui and Min-
Swap with a given 7, respectively. Fig. 17(b) shows how
Min-Swap ends the day having a cost excess that is a 0.14%
larger than the cost of BiQui‘s decisions. Moreover, with
tolerances 7 < 0.02 Min-Swap ends the day paying a 0.2%
more than BiQui. That is, the smaller the 7, the smaller the
extra cost.

It is worth mentioning the prominent peaks presented by
Fig. 17(b) for 7 > 0.02 at 6:00, 15:00 and 21:00. The former
occurs because at 6:00 Min-Swap with 7 = 0.05 suffers from
an offloading ramp to the cloud — see Fig. 15(b) — and Min-
Swap incurs into more expensive configurations. The increase
at 15:00 and 21:00 are due to prominent swaps in the number
of edge CPUs in the best solution — ie., with 7 = 0 in
Fig. 15(c-d). Hence, the cost cumulative difference increases.

VIII. RELATED WORK

Vehicles-to-anything (V2X) conveys communications
among vehicles (V2V), pedestrians (V2P) and network or
infrastructure (V2N), being a superset of all of them. Resource
provisioning and offloading for V2V/V2P are also related to
V2N, as both vehicles and phones have computing capacity in
the network. We now provide an overview of the most recent
works that are closely related to our study.

Traffic Offloading in V2X. Work [30] aims at min-
imizing the average response time in Internet of Vehicles
(IoV) systems, via task offloading to the fog. Work [24]
aims at revenue maximization through task offloading among
multiple edge service providers. Work [31] assesses vehicle
task offloading through Reinforcement Learning (RL) using
an Asynchronous Advantage Actor-Critic (A3C) architecture,
aiming to learn an offloading policy to minimize task exe-
cution time and resource usage while maximizing system
performance. All these works account for coarse aggregate
metrics, e.g., average latency or data rate, thus not being
able to adequately address the stringent reliability and latency
requirements for safety-critical V2N services. We additionally
consider (i) resource provisi-oning; and (ii) processing time of
each task at the edge/cloud, guaranteeing URLLC constraints
are met end-to-end.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

Resource Scaling and Allocation in V2X. 7-ROAD [32]
is a static algorithm that performs RAN slicing for Emergency
V2X services. The goal is to provide sufficient RAN resource
blocks to each slice, ensuring that emergency V2X services
receive the necessary resources for reliable and efficient
communications during critical scenarios.

Work [33] studies dynamic radio and power resource
allocation via a meta-reinforcement learning approach that
combines Deep Q-networks (DQN) for discrete sub-band
assignment with Deep Deterministic Policy Gradient (DDPG)
for continuous power control, enabling efficient handling
of hybrid action spaces. Work [34] introduces a dynamic
allocation of frequency resources for LTE to Vehicle User
Equipments (VUEs) and RSUs employing a two-stage Multi-
Objective Discrete Particle Swarm Optimization (MDPSO)
and precoding to reduce power consumption while adapting
to real-time channel conditions. Compared to these works, we
explicitly address the stochastic nature of packet delays caused
by queuing waiting times and service times that depend on
the frame length, rigorously evaluating the 99.999-percentile
of the sojourn time for V2N traffic capturing the total time
packets spend waiting in the queue at computing servers and
being processed.

Joint task offloading and resource allocation for V2X.
To the best of our knowledge, [35], [36] are the only works
that jointly tackle the task offloading and resource allocation
for V2X. However, they oversee the delay’s stochastic nature,
considering it as a ratio between the demand and computing
resources [35], or ignore the V2X URLLC requirement [36].
Our work considers the inherent stochasticity of queuing
and processing delays, and guarantees delay and reliability
constraints imposed by V2X.

URLLC Service Provisioning. Some literature tackles
URLLC services in contexts that are not related with V2X,
e.g., [37], [38]. Works [27], [28] leverage Stochastic Network
Calculus (SNC) to infer the delay violation probability in
URLLC, in order to scale the slice radio resources. Work [28]
computes the amount of guaranteed radio resources for
each URLLC service providing probabilistic delay guarantees,
while [27] bounds the delay under constraints related to the
target violation probability and the distribution of the traffic
demand. We account for the end-to-end delay of URLLC
services and advocate to queuing theory, capturing the packe-
tized nature of Internet traffic and providing tight bounds even
for very high reliability, such as the 99.999 delay percentile
of the delay and approximate its distribution.

Gamma-distributed service times. For multiple servers
following a gamma distribution of order two, [39] studies the
probabilities of having n tasks in a system. For a single server,
[40] characterizes the steady-state queue distribution under
batch service queue, while [41] characterizes the waiting time
distribution. However, none of these works study multi-server
queueing systems whose service times are a mixture of Gamma
distributions, i.e. the M/U/k system.

MI/G/k literature. We discuss M/G/k queues, as this is the
mostly used type of queues. Existing works leverage deficit
renewal equations [42] or difference-differential equations [43]
to approximate the M/G/k waiting time distribution, leading to

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES 283

errors in the order of 10_2, which do not suffice for URLLC
services as tele-operared driving. These approaches generally
assume steady-state conditions, which may overlook transient
behaviors that are critical to low-latency applications requiring
both reliability and responsiveness under fluctuating network
loads. Thus, such methods often don’t adapt to highly variable
service distributions and may introduce significant inaccura-
cies in high-load or bursty arrival scenarios, which are typical
in URLLC demands. Rather, our approximation convolves the
M/D/k waiting time with the gamma mixture service time,
ensuring URLLC with errors lower than 107°. We leverage
the deterministic structure of M/D/k queues, and we provide
an analytically tractable, closed form, approximation that
remains robust under diverse traffic conditions, ensuring the
stringent accuracy and ultra-low latency that are required in
real-time URLLC applications. Overall, our work extends the
capabilities of M/G/k models to meet next-generation service
requirements that demand error rates significantly lower than
those achievable with traditional approaches.

Latest Developments in V2X. The main focus has
been enhancing reliability, reducing latency, and improv-
ing throughput to meet the stringent demands of vehicular
networks. Work [44] presents IEEE 802.11bd as a significant
advancement in vehicular communication, addressing key QoS
challenges through enhancements in both the PHY and MAC
layers. By introducing mechanisms such as LDPC coding and
adaptive packet repetition the standard effectively mitigates
issues related to latency, reliability, and congestion. In parallel,
work [45] presents a detailed analytical and simulation-based
evaluation of 5G NR sidelink Mode 2 in unlicensed bands
(SL-U), revealing that existing 3GPP access rules significantly
degrade throughput due to strict transmission constraints at SL
slot boundaries. The study proposes Markov-based models and
a randomization strategy to mitigate collisions and enhance
SL-U performance.

IX. CONCLUSION AND FUTURE WORK

We introduce the V2N Computation Offloading and
CPU Activation (V2N-COCA) problem, aiming to minimize
energy/monetary costs taking offloading and scaling decisions
to process URLLC V2N traffic at the edge/cloud. To address
the lack of closed-form expressions for the URLLC require-
ment, we use queuing theory to approximate tasks sojourn
times at the servers. We rigorously validate our approximation,
w.r.t. its accuracy and effectiveness when solving the V2N-
COCA Problem. Based on its structural properties, we design
BiQui, a provably asymptotically optimal and computationally
efficient algorithm. Results over real-traces show that BiQui
outperforms the state of the art, meeting the target delay
99.999% of the time. We also formulate the Min-Swap
problem to minimize switching on/off CPUs as the load
changes, yet bounding the extra the cost. To solve the Swap-
Prevention problem we design Min-Swap, an algorithm that
minimizes unnecessary CPU (de)activations constraint by a
cost-tolerance parameter 7, with provably low complexity.
Our evaluations on real-world vehicular traffic traces demon-
strate that the integration of Min-Swap achieves superior
resource stability with minimal additional cost, making it an

indispensable tool for dynamically fluctuating environments.
The results underline the versatility of our framework in
ensuring cost-efficiency, reliability, and sustainability for V2N
URLLC services.

We foresee four lines of future work. First, considering
vehicles that use multiple V2N applications with diverse
URLLC requirements. Second, accounting for a three-tier
architecture with cloud, edge and in-vehicle processing. Third,
minimizing transmission and propagation delays using optimal
NR and transport scheduling, thus reducing CPU consumption.
Fourth, considering non-linear task processing, parallel task
processing and a pool of heterogeneous processing units.

APPENDIX A
PROOF OF PROPOSITION 1

We only prove the increasing monotonicity w.r.t. decision
x, i.e., CPU activation at the edge. However, exactly the
same arguments can be used to prove the monotonicity w.r.t.
decisions y of CPU activation at the cloud. Fix V = V),
y = yo and z = 2y, and let f(z) = K(Vy,z,yo,20).
By definition, f(x) is monotone increasing in x if and only
if 11 > 15 <= f(x1) > f(x2). Observe that the total
service time Sg = Ag(2, V)s at the edge, i.e., the aggregate
over all activated CPUs at the edge, is independent of the
CPU activation decisions, since it essentially depends on the
amount of tasks that are sent there, i.e., from the offloading
decisions zy, which we previously fixed. Similarly for the
service time S = A¢(z, V)s at the cloud. Observing the
linearity of Eq. (5) w.r.t. the number x of activated CPUs at
the edge, we confirm that the monotonicity condition holds,
which concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

(1)-(2): non-monotonicity/non-continuity w.r.t. z. We per-
form a proof by finding a non-continuous and non-monotone
counterexample. Fig. 2 was produced by performing exhaus-
tive searches, and can be thus treated as an oracle. Although
this proof relies on a particular parametrization, in fact it
suffices to show that the monotonicity and continuity prop-
erties do not hold in general. Also, we provide arguments
that expose the characteristics of the feasible region for any
other instance of the problem, i.e., for any parametrization.
Let 21 = 0.672, 2o = 0.685, and 23 = 0.692. Clearly,
21 < 2 < z3. However, the feasible region found by
exhaustive searches (Fig. 2) suggests that K(V, z,y,21) <
K(V,z,y,2), and K(V,z,y,2) > K(V,z,y, 23), which
contradicts the definition of monotonicity, and thus concludes
the proof for (1). Remark: by the monotonicity definition, all
other parameters except of the offloading policy z should have
been fixed, while in our example the number of cloud CPUs
increases from y; = 31 to yo = 32 as we move offloading
from z; = 0.672 to 2o = 0.685. This jump is due to the
URLLC requirement, which implies that an additional CPU
needs to be activated in order to obtain a feasible solution.
This concludes the proof for (2), and the description of our
counterexample.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

284 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

(3): continuity and linearity w.r.t. z between consecutive
steps. The steps in the boundary occur due to the change in
the number of minimum CPUs that are needed to ensure an
URLLC. While being in between of two consecutive jumps in
the boundary of the region, i.e., when fixing the number x and y
of edge or cloud activated CPUs, respectively, the subscription
cost given by cg. and cg. in Eq. (5) is fixed. However, the total
service time depends on the amount of tasks that are assigned,
i.e., by the offloading policy z. By combining eqs. (2), (3),
and (5), we conclude the proof.

APPENDIX C
PROOF OF PROPOSITION 4

The CDF of the sojourn time will allow the reliability
requirement to be perfectly described, and thus the binary
search in line 2 of Alg. 1 to find the optimal number y of CPUs
to activate at the cloud. The next phase that BiQui continues
with is walking down the feasibility region boundary. Since
from Proposition 1 the objective function is monotone w.r.t.
the CPU activation decisions, the optimal CPU activation
configurations will lie in the boundary w.r.t. them. Combining
this with the linearity of the feasibility region boundary w.r.t.
the offloading decision z (third property in Proposition 2), and
considering zgrqn — 0, we obtain the result.

APPENDIX D
PROOF OF PROPOSITION 5

Given x(r—1),y(t—1)>0, the projection of Problem 2 objec-
tive function at a fixed yo(t) is f(x(2)) = Ix(r) — x(r — DI + &,
where £ = |yo(t) — y(¢t — 1)]. For x(¢r) < x(r—1), f(x(2))
is decreases with x(#). While for x(r) > x(t—1), f(x(2))
is decreases with x(f). Hence, the projection f(x(¢)) is not
monotone, and thus the objective function from Problem 2 the
same.

APPENDIX E
PROOF OF PROPOSITION 6

Let (z(t),y(t),z(t)) € Q' (r1). By definition, the cost of
such configuration exceeds the optimal solution cost by less
than a 7 %, which is less than 7% from the cost of the optimal
solution. With this simple argument we trivially conclude that
11 <195 Q (1) CQ(10).

APPENDIX F

STRUCTURAL PROPERTIES OF PROB. 2 WITH CPU
SWITCHING COSTS

In this appendix we discuss the structural proper-
ties of Problem 2 when the objective function considers
CPU switching costs, i.e., when the objective function is
Ux(t)x(t—1),y(t),y(t—1)) defined in (17). First, we prove
that the objective function (17) is non-monotone. Then, we
show that the feasibility region Q(7) increases with the
tolerance parameter 7 despite the new objective function — i.e.,
Proposition 6 holds.

Proposition 7: The objective function

U@ x(t=1),y(0),y(t—1)) with vy, vy, ¢z, ¢y > 0 is
non-monotone w.r.t. the activation decisions x(),y(?).

Proof: Fix x(t—1),y(¢),y(t—1). Then the objective function
U(x(#),x(t—1),y(8),y(t—1)) = U(x(?)) becomes vy [z(t) — z(t —
DT+ ¢ [z(t —1)—z(t)]" +k, with & a constant. Take 7y >
z(t—1) so the objective function becomes U (z(t)) = vz (29—
z(t — 1)) + k. We can find a smaller value for the number of
edge CPUs 21 < 1 such that the objective is larger, i.e., such
that U(z1) > Ul(ap). Concretely, if we take 21 < z(t — 1)
the objective function is U(x1) = ¢z(z(t — 1) — 1) + &,
and we can choose z1 < z(t — 1) — Z—;(xg —z(t—1)) to
guarantee U(z1) > U(zp). Hereof, we conclude the projection
of the objective function on the number of CPUs U(x(?)) is
non-monotone, thus the four dimensional objective function
Ux(@).x(t—1),y(1),y(1—1)). u

Lastly, it is worth remarking that replacing the objective
function in Problem 2 by U(x(#),x(t—1),y(f),y(t—1)) has no
impact on the feasibility region (7). Hence, Proposition 6
still holds.

APPENDIX G
THE SNC BENCHMARK

Stochastic Network Calculus (SNC) [29] defines an arrival
curve A(7,t) € RT, 7,¢ > 0 denoting the bits that arrive to
a system in the time interval (7, t]. Similarly, SNC considers
a service curve S(7,t) € RT, 7,¢ > 0 denoting the bits that
where served by a system in the time interval (7, ¢]. In case
the arrival and service process are stationary the arrival and
service curves are fully determined by A(?),S(¢), t > 0. With
A(1),S(¢) referring to the bits that arrived and were served in ¢
time units.

Following the lead of [27], we assume that the arrival
and service curves are bounded by the affine envelopes
a(t), B(t) € RT. In particular, we resort to the Exponentially
Bounded Burstiness (EBB) and the Exponentially Bounded
Fluctuation (EBF) approach taken by [27], [46]. That is, we
consider affine envelopes «(t), 5(t) satisfying

P(S(t) < (1)) <eg

with € 4,eg the overflow and deficit profiles.

Both envelopes are defined as «(t) = (ps4 + d)t + by and
B(t) = (pp—90)[t— %]'*‘, with [z]T = max{0,z} and § > 0
the sample path argument [46]. In case the arrival and service
curves satisfy (21), affine envelopes bound the delay as:

P(A(1) > a(t)) < ea, @21

W = batbs/ps—o (22)

We now compute how should b4, bg, pg,d > 0 must be to
satisfy the overflow and deficit profiles in (21). In particular,
proceed as indicated by [46] and [28, sec. IIL.B].

First, we remark that the arrival curve A(f) will denote the
number of video processing tasks that arrived in ¢ time units.
Now, we bound the MGF of the arrival curve A(f) using a
rate-burst curve (p4,0g)

My(6) = E{eGA(t)} — A1) < M (6)

_ E{e(?a(t)} — Opat+oa) (23)

with the former equality given by the MGF of a Poisson

)
distribution, and (23) holding if py4 = A(e@—l)

o4 =0.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

CHATZIELEFTHERIOU et al.: OPTIMAL SCALING AND OFFLOADING FOR SUSTAINABLE PROVISION OF RELIABLE V2N SERVICES 285

Now we follow the same approach for the service curve
S(t), which denotes the number of V2N tasks dispatched in ¢
time units. According to (3), the service time of a V2N video
task is proportional to the frame size [;, which obeys a gamma
distribution I'(«;, ;). Consequently, the time to process a
task is computed as fir(ay,Bi;l)s, with fr(ag, B;1;) the
probability density function of the Gamma distribution for the
task size [;, and S the average V2N task processing time.
Hence, given the MGF of the gamma distribution, we express
the number of tasks processed in ¢ time units is given by the
service curve S(t) = ¢t — [;s, whose negative MGF is

[o¢]
Mg(-0) =]E{e_e(t_lis)} = e_Gt/ " fo (v, By o) da
0

(1))
Bi
As in (23) we bound the service curve S(#) MGF through
another rate-burst curve (pg,op). If the rate-burst curve is a
lower bound of the service curve S(¢), then its negative MGF
is an upper bound of S(r) negative MGF. In other words, the
deficit profile holds as long as

MS<—9) _ log(l——) @ Ht

(24)

] < Mg(—9) = e—0(pst—os)

—ay; log(—Z—S)
which only occurs as long as pg =1, og = g L

All left to compute the delay bound in (22) is to compute
ba,bg. As [28] points out, the EBB and EBF models are
connected with the Chernoff bound [47]. Consequently, we
claim bA =04 — (log(EA) + log(1 — ¢ 99)) and bg =

o5 — g(log(es) + log(1 - ¢,

Altogether, we formulate an optimization problem to mini-
mize the delay expression in (22). In particular, we seek the
adequate 6,60 > 0 parameters to minimize the delay. The
corresponding optimization problem stays as follows.

Problem 3 (SNC delay bound): Assume equal deficit and
overflow violation probabilities €4 = ep = §. Given a
Poisson arrival process or rate A and a service time ;.S with
li ~ fr(«;, B;), the SNC delay is given by the 6,6 > 0 setup
minimizing:

-% log(l - %‘9) - %(log(%) + log(l - 6_95>>

X 1-0
(25)
st 0,6,p4 >0 (26)

Note that Problem 3 assumes equal deficit and overflow
probabilities as in [27], [28]. Although this is a common
assumption, it is not true that the service curve is as prone as
the arrival curve when it comes to violate the affine envelopes.
Indeed, we conjecture that such assumption leads to the bad
behaviour observed during our experiments in Section VII-C.

To find a solution for Problem 3 we need the objective
function to be well defined, and the constraints to ho%)d. Both
translate into having 6 € (0, g) and ¢ € (0,4 — %)

We solve Problem 3 through an exhaustlve search of (25) in
which we take (1) 0/ € Qp = {e, ..., g — €} with |Q] = 100;

and then iterate over (2) &' € Qg = {¢,..., 5 — %

e} with |Qs] = 100, and € = 100 Then, we select 6,6 =
ming 5 {f(¢',0")} with f the Ob_]eCtIVC function (25).

REFERENCES

[1] L. E. Chatzieleftheriou, J. Pérez-Valero, J. Martin-Pérez, and P. Serrano,
“Sustainable provision of URLLC services for V2N: Analysis and
optimal configuration,” in Proc. Int. Symp. Theory, Algorithmic Found.,
Protoc. Design Mobile Netw. Mobile Comput., 2024, pp. 161-170.

[2] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Commun. Surveys Tuts., vol. 21,
no. 2, pp. 1243-1274, 2nd Quart., 2019.

[3] Vehicular Connectivity: C-V2X & 5G, 5G Americas, Bellevue, WA,
USA, 2021.

[4] M. Noor-A-Rahim et al., “6G for vehicle-to-everything (V2X) commu-
nications: Enabling technologies, challenges, and opportunities,” Proc.
IEEE, vol. 110, no. 6, pp. 712-734, Jun. 2022.

[5] “Nexar” Accessed: Jan. 16, 2024. [Online]. Available: https://www.
getnexar.com/nexar-app/

[6] H. Koumaras et al., “Analysis of H. 264 video encoded traffic,” in Proc.
5th Internat. Netw. Conf. (INC), 2005, pp. 441-448.

[71 H.Zhang, N. Liu, X. Chu, K. Long, A.-H. Aghvami, and V. C. M. Leung,
“Network slicing based 5G and future mobile networks: Mobility,
resource management, and challenges,” IEEE Wireless Commun. Mag.,
vol. 55, no. 8, pp. 138-145, Aug. 2017.

[8] Z. Cao, Z. Wang, and E. Zegura, “Performance of hashing-based
schemes for Internet load balancing,” in Proc. IEEE INFOCOM, vol. 1,
2000, pp. 332-341.

[9] L. Cominardi, L. M. Contreras, C. J. Bcrnardos, and 1. Berberana,
“Understanding QoS applicability in 5G transport networks,” in Proc.
IEEE Int. Symp. Broadband Multimedia Syst. Broadcast., 2018, pp. 1-5.

[10] M. Roitzsch and M. Pohlack, “Principles for the prediction of
video decoding times applied to MPEG-1/2 and MPEG-4 part 2
video,” in Proc. IEEE Int. Real-Time Syst. Symp. (RTSS), 2006,
pp- 271-280.

[11] A. C. Bavier, A. B. Montz, and L. L. Peterson, “Predicting MPEG
execution times,” in Proc. ACM SIGMETRICS Joint Int. Conf. Meas.
Model. Comput. Syst., 1998, pp. 131-140.

[12] V. Gupta, M. Harchol-Balter, J. G. Dai, and B. Zwart, “On the
inapproximability of M/G/K: Why two moments of job size distribution
are not enough,” Queueing Syst., vol. 64, pp. 5-48, Jan. 2010.

[13] Service Requirements for the 5G System, 3GPP Standard TS 22.261,
Jun. 2023.

[14] Service Requirements for Enhanced V2X Scenarios, 3GPP Standard TS
22.186, Jun. 2023.

[15] Physical Layer Procedures for Data. 3GPP Standard TS 38.214,
Sep. 2023.

[16] A. Vasan, A. Sivasubramaniam, V. Shimpi, T. Sivabalan, and R. Subbiah,
“Worth their watts?>—An empirical study of datacenter servers,” in Proc.
Int. Symp. High-Perform. Comput. Archit., 2010, pp. 1-10.

[17] “AWS EC2 calculator.” 2023. Accessed: Jan. 30, 2024. [Online].
Available: https://calculator.aws/#/addService/ec2-enhancement

[18] M. Xu et al., “From cloud to edge: A first look at public edge
platforms,” in Proc. 21st ACM Internet Meas. Conf., 2021, pp. 37-53.

[19] G. Franx, “A simple solution for the M/D/c waiting time distribu-
tion,” Oper. Res. Lett., vol. 29, no. 5, pp. 221-229, 2001.

[20] H. C. Tijms, Stochastic Models: An Algorithmic Approach. Hoboken,
NJ, USA: Wiley, 1994.

[21] J. Perez-Valero, J. Garcia-Reinoso, A. Banchs, P. Serrano, J. Ortin,
and X. Costa-Perez, “Performance trade-offs of auto scaling schemes
for NFV with reliability requirements,” Comput. Commun., vol. 212,
pp. 251-261, Dec. 2023.

[22] T. H. Cormen et al., Introduction to Algorithms. Cambridge, MA, USA:
MIT press, 2022.

[23] “Traffic data” 2024. [Online]. Available: https:/github.com/
MartinPJorge/biqui/blob/master/data/traffic_torino_v02.csv

[24] J. Ren et al., “An efficient two-layer task offloading scheme for MEC
system with multiple services providers,” in Proc. IEEE INFOCOM,
2022, pp. 1519-1528.

[25] N. Gans, G. Koole, and A. Mandelbaum, “Telephone call centers:
Tutorial, review, and research prospects,” Manuf. Service Oper. Manag.,
vol. 5, no. 2, pp. 79-141, 2003.

[26] K. Xiong, S. Leng, C. Huang, C. Yuen, and Y. L. Guan, “Intelligent
task offloading for heterogeneous V2X communications,” IEEE Trans.
Intell. Transp. Syst., vol. 22, no. 4, pp. 2226-2238, Apr. 2021.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

286

[27]

[28]

(291

[30]

[31]

(32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOLUME 23, 2026

O. Adamuz-Hinojosa, V. Sciancalepore, P. Ameigeiras, J. M. Lopez-
Soler, and X. Costa-Pérez,, “A stochastic network calculus (SNC)-based
model for planning B5G uRLLC RAN slices,” IEEE Trans. Wireless
Commun., vol. 22, no. 2, pp. 1250-1265, Feb. 2023.

0. Adamuz-Hinojosa, L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra,
and X. Costa-Pérez, “ORANUS: Latency-tailored orchestration via
stochastic network calculus in 6G O-RAN,” in Proc. IEEE INFOCOM,
2024, pp. 61-70.

Y. Jiang et al., Stochastic Network Calculus, vol. 1. London. U.K.:
Springer, 2008.

X. Wang, Z. Ning, and L. Wang, “Offloading in Internet of Vehicles:
A fog-enabled real-time traffic management system,” IEEE Trans. Ind.
Informat., vol. 14, no. 10, pp. 4568-4578, Oct. 2018.

Q. Qi et al., “Knowledge-driven service offloading decision for vehicular
edge computing: A deep reinforcement learning approach,” IEEE Trans.
Veh. Technol., vol. 68, no. 5, pp. 4192-4203, May 2019.

A. Okic, L. Zanzi, V. Sciancalepore, A. Redondi, and X. Costa-Pérez,
“m-ROAD: A Learn-as-You-Go Framework for On-Demand Emergency
Slices in V2X Scenarios,” in Proc. IEEE INFOCOM, 2021, pp. 1-10.
Y. Yuan, G. Zheng, K.-K. Wong, and K. B. Letaief, “Meta-reinforcement
learning based resource allocation for dynamic V2X communica-
tions,” IEEE Trans. Veh. Technol., vol. 70, no. 9, pp. 8964-8977,
Sep. 2021.

J. Shi, Z. Yang, H. Xu, M. Chen, and B. Champagne, “Dynamic resource
allocation for LTE-based vehicle-to-infrastructure networks,” IEEE
Trans. Veh. Technol., vol. 68, no. 5, pp. 5017-5030, May 2019.

W. Feng, S. Lin, N. Zhang, G. Wang, B. Ai, and L. Cai, “Joint C-
V2X based offloading and resource allocation in multi-tier vehicular
edge computing system,” IEEE J. Sel. Areas Commun., vol. 41, no. 2,
pp. 432-445, Feb. 2023.

Q. Liu, R. Luo, H. Liang, and Q. Liu, “Energy-efficient joint compu-
tation offloading and resource allocation strategy for ISAC-aided 6G
V2X networks,” IEEE Trans. Green Commun. Netw., vol. 7, no. 1,
pp. 413-423, Mar. 2023.

A. Anand, G. De Veciana, and S. Shakkottai, “Joint scheduling of
URLLC and eMBB traffic in 5G wireless networks,” IEEE/ACM Trans.
Netw., vol. 28, no. 2, pp. 477-490, Apr. 2020.

A. Azari, M. Ozger, and C. Cavdar, “Risk-aware resource allocation
for URLLC: Challenges and strategies with machine learning,” IEEE
Commun. Mag., vol. 57, no. 3, pp. 4248, Mar. 2019.

S. Shapiro, “The m-server queue with poisson input and gamma-
distributed service of order two,” Oper. Res., vol. 14, no. 4, pp. 685-694,
1966.

S. Pradhan, U. Gupta, and S. Samanta, “Queue-length distribution of a
batch service queue with random capacity and batch size dependent ser-
vice: M/g r y/1 m/g"y_r/1,” Opsearch, vol. 53, pp. 329-343, Jun. 2016.
A. Ghosal, “Queues in series,” J. Royal Stat. Soc. Series B, Methodol.,
vol. 24, no. 2, pp. 359-363, 1962.

M. van Hoorn and H. Tijms, “Approximations for the waiting time dis-
tribution of the M/G/c queue,” Perform. Eval., vol. 2, no. 1, pp. 22-28,
1982.

P. Hokstad, “Approximations for the M/G/m queue,” Oper: Res., vol. 26,
no. 3, pp. 510-523, 1978.

C. Iliopoulos, A. Iossifides, C. H. Foh, and P. Chatzimisios, “IEEE
802.11 bd for next-generation V2X communications: From protocol
to services,” IEEE Commun. Stand. Mag., vol. 9, no. 2, pp. 88-98,
Jun. 2025.

V. Weerackody, H. Yin, and S. Roy, “NR sidelink mode 2 in unlicensed
bands: Throughput model & validation,” IEEE Trans. Commun., vol. 73,
no. 1, pp. 216-229, Jan. 2025.

M. Fidler et al., “A guide to the stochastic network calculus,” IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 92-105, 1st Quart., 2015.
S. M. Ross, A First Course in Probability. London, U.K.: Pearson Educ.,
2014.

with RIS.

Livia Elena Chatzieleftheriou (Member, IEEE)
received the M.Sc. degree in applied mathematics
and the Ph.D. degree in computer science. She is cur-
rently with TU Delft as a Marie Sklodowska-Curie
Actions (MSCA) Postdoctoral fellow. Until Aug
2025 she was a Juan de la Cierva awardee with the
IMDEA Networks Institute, and a part-time Lecturer
with the University Carlos III of Madrid (UC3M).
Her current research interests include online learn-
ing,optimization, explainable Al for next-generation
mobile networks, and ISAC technologies combined

Jestis Pérez-Valero received the Ph.D. degree from
the Universidad Carlos III de Madrid, in 2024.
He is currently a Postdoctoral Researcher and
a Lecturer with Universidad de Murcia. He has
been involved in several projects funded by the
European Commission through the SNS. His main
research interests lie in the performance analysis and
optimization of communication systems.

Jorge Martin-Pérez received the first B.Sc. degree
in mathematics, and the second B.Sc. degree in
computer science from the Universidad Auténoma
de Madrid, in 2016, and the M.Sc. and Ph.D.
degrees in telematics from the Universidad Carlos
III de Madrid, in 2017 and 2021, respectively.
Since 2016 he has participated in national and EU
funded research projects. He currently works as an
Associate Professor with the Universidad Politécnica
de Madrid. His research focuses in applied math for
communications.

Pablo Serrano (Senior Member, IEEE) is an
Associate Professor with the University Carlos III
de Madrid. He has over 100 scientific papers in
peer-reviewed international journals and conferences
and has served on the TPC of many conferences.
His research interests lie in the analysis of wire-
less networks and the design of network protocols
and systems. He currently serves as an Editor for
IEEE OPEN JOURNAL OF THE COMMUNICATION
SOCIETY.

Authorized licensed use limited to: UNIVERSIDAD CARLOS Il MADRID. Downloaded on January 30,2026 at 08:18:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

