
Received 7 May 2025; revised 16 June 2025; accepted 1 July 2025. Date of publication 4 July 2025; date of current version 7 August 2025.

Digital Object Identifier 10.1109/OJCOMS.2025.3586088

Minimum-Cost Design of Auto-Scaling Server
Farms Providing Reliability Guarantees

JESUS PEREZ-VALERO 1, PABLO SERRANO 2 (Senior Member, IEEE),
JAIME GARCIA-REINOSO 3 (Member, IEEE), ALBERT BANCHS 2,4 (Senior Member, IEEE),

AND XAVIER COSTA-PEREZ 5,6,7 (Senior Member, IEEE)

1Department of Information and Communications Engineering, University of Murcia, 30100 Murcia, Spain
2Department of Telematic Engineering, University Carlos III of Madrid, 28911 Leganés, Spain

3Department of Automatic, University of Alcalá, 28871 Alcalá, Spain
4IMDEA Networks Institute, 28911 Leganés, Spain

5Department of 6G, NEC Laboratories Europe, 69115 Heidelberg, Germany
6Department of Engineering, ICREA, 08010 Barcelona, Spain

7Department of AI-Driven Systems, i2cat, 08034 Barcelona, Spain

CORRESPONDING AUTHOR: J. PEREZ-VALERO (e-mail: jesus.perezvalero@um.es)

This work was supported in part by MCIN/AEI/10.13039/501100011033/ through the Project 6GINSPIRE under Grant PID2022-137329OB-C42; in part by the
NEC Laboratories Europe Student Research Fellowship Program of 2021; and in part by the Spanish Ministry of Economic Affairs and Digital Transformation

and the European Union-NextGenerationEU through the UNICO 5G I+D SORUS Project. The work of Jaime Garcia-Reinoso was supported in part by the
Spanish Ministry for Science and Innovation through the ADMINISTER Project under Grant TED2021-131301B-I00.

ABSTRACT As next-generation mobile networks increasingly rely on virtualized infrastructure to deliver
critical services, ensuring both the efficiency and reliability of server farms becomes essential. These
infrastructures must meet stringent reliability guarantees to support time-sensitive applications in emerging
5G and beyond networks. In this paper, we address the design of auto-scaling server farms–specifically,
selecting the most suitable server type and corresponding number of servers–by considering both service
requirements and associated operational and infrastructure costs. To this end, we develop an optimization
algorithm that combines (i) a queueing-theoretic model to estimate the resources needed to meet reliability
constraints, and (ii) a general cost model that captures both capital and operational expenditures. We
validate our approach through extensive simulations, comparing it against classical queueing-based methods
and exhaustive numerical searches: our proposal reduces costs by 22% as compared against the benchmark,
with solutions that are within 3% of numerical searches at 10% of the computational complexity, offering
a new scalable and cost-effective methodology for designing reliable server farms.

INDEX TERMS URLLC, B5G, auto-scaling, NFV, reliability.

I. INTRODUCTION

WITH the arrival of Network Function Virtualization
(NFV) [1], mobile services will be implemented

as interconnected virtual network functions (VNFs) hosted
by cloud servers [2]. To make an efficient use of the
resources, these VNFs need to be scaled up and down based
on their load [3]. This scaling does not impose several
challenges when dealing with traditional best effort services,
and therefore the impact of non-zero activation times, or the
fallibility of servers, is negligible. However, when dealing
with services with stringent reliability requirements, such
as, e.g., Ultra Reliable Low Latency Communications (with

reliability levels of up to 5 or 6 nines [4]), the impact of
these parameters cannot be neglected.
In fact, in our previous work we analyzed the non-

negligible impact of non-zero start-up times and finite server
lifetimes on the reliability of services provided by an auto-
scaling server farm [5], [6]. We first assumed a fixed scenario
with a given server farm and developed an analytical model
to optimize its activation and deactivation thresholds [5].
Later, we proposed a configuration mechanism that dynam-
ically adjusts these thresholds to ensure a given reliability
guarantee [6] to the observed conditions. In these works we
illustrate that, depending on traffic conditions and service

c© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/

6114 VOLUME 6, 2025

HTTPS://ORCID.ORG/0000-0003-2544-2692
HTTPS://ORCID.ORG/0000-0002-5176-0013
HTTPS://ORCID.ORG/0000-0002-7475-2841
HTTPS://ORCID.ORG/0000-0003-3544-8537
HTTPS://ORCID.ORG/0000-0002-9654-6109

requirements, a few carrier-grade servers (which are powerful
and reliable but consume more energy) may be less efficient
than many consumer-grade servers (which are less powerful
but more energy-efficient).
Motivated by the above finding, in this paper we tackle

the design problem: given (i) a specific service to be
supported in a server farm, characterized by a target
reliability guarantee and an arrival and service rate; and
(ii) a set of candidate server types, each one with a given
set of characteristics, the challenge is to determine the
optimal deployment configuration (i.e., number of servers
and their type) that ensures that the service is provided
with the required guarantee while minimizing the total
cost. To compute this cost we assume a generic cost
model that assumes some infrastructure ownership, and
therefore includes capital expenditure (CapEx) and operating
expenditure (OpEx) terms, but it could be used in other
scenarios such as, e.g., a cloud-based service provision,
which requires pre-booking resources with different cost and
performance characteristics.
We illustrate the effectiveness of our proposal assuming

five different types of servers, which are modeled after
existing equipment. According to the results, our proposal
reduces costs by 22% as compared against the benchmark
based on classical queueing theory, with solutions that are
within 3% of exhaustive numerical searches at 10% of the
computational complexity. As compared against previous
works considering scaling farms for NFV with reliability
requirements (duly reviewed in Section VI), the main
novelties and contributions of this work as are follows:

• We develop an analytical model to estimate the number
of resources that a server farm requires to support a
given service with certain reliability requirements.

• We present a cost model to estimate the cost of
providing the service, including CapEx and OpEx terms
and leveraging the analytical model to estimate the
server occupation.

• We formalize the optimal design of a server farm, which
given a set of different server types, selects the type
and number of servers that minimize the cost while
guaranteeing the required reliability.

• We illustrate how to extend the design for the case
of heterogeneous scenarios, where different services
with different reliability requirements are supported by
different type of services.

• We assess the accuracy of the analytical model and
validate the server farm design algorithm through
extensive simulations, which assume five different types
of servers modeled after real-life service types and
equipment.

The rest of the paper is organized as follows. Section II
outlines the key motivations and challenges addressed in
this work. Section III describes the system model, defining
the key components and assumptions. Section IV introduces
the cost model used throughout the study, followed by an

analytical characterization of the system’s key performance
variables, and concluding with the proposed algorithm for
server farm design. Section V evaluates the accuracy of
our analytical model and the effectiveness of the proposed
approach through extensive simulations. Section VI provides
a comprehensive review of related work on the performance
analysis and configuration of auto-scaling server farms.
Finally, Section VII summarizes our key findings and
conclusions.

II. MOTIVATION AND CHALLENGE
The growing reliance on virtualized infrastructures to sup-
port critical services in next-generation mobile networks
introduces significant challenges, particularly in ensuring
the reliability of auto-scaling server farms [7], [8]. Unlike
traditional best-effort services, where minor delays in
resource activation or occasional hardware failures have
little impact, mission-critical applications demand stringent
reliability guarantees. Services such as industrial automation,
autonomous driving, and remote healthcare require failure
probabilities as low as one in a million (99.9999%), making
even brief disruptions unacceptable. These requirements
impose not only an operational challenge but also a design
challenge: the number of active resources must be dynami-
cally adapted to the observed traffic, and the type and number
of servers must be selected to meet reliability goals without
incurring excessive cost.
Regarding the operational challenges, since traffic loads

fluctuate dynamically, adaptive resource allocation is
needed to prevent service interruptions while minimizing
Operational Expenditures (OpEx). Some solutions rely on
auto-scaling techniques to adapt to the traffic load [3], [9] but
often assume instantaneous activation of pshysical machines
(PMs), which is unrealistic in practical deployments, while
other solutions rely on analytical tools while taking into
account the non-zero boot up times and fallability of
servers [5], [10] (we review the related work in Section VI).
Since these works do not tackle the design challenge,
one possible strategy would be over-provisioning, where
additional servers are deployed to ensure redundancy. While
this approach improves reliability, it may result in significant
Capital Expenditures (CapEx).
In this paper, we develop a cost-aware optimization

framework that selects the optimal type and number of
servers, minimizing both CapEx and OpEx while meeting
stringent reliability constraints. We focus on the worst-case
scenario, assuming that the peak traffic load corresponds to
the average traffic load as this imposes the most demand-
ing operational constraints, ensuring that our methodology
remains applicable to other scenarios.

III. SYSTEM MODEL
We assume the same system as in [5], [6], i.e., an
auto-scaling server farm for NFV, comprising a central-
ized infrastructure manager (IM) and several physical
machines (PMs). Initially, we assume a homogeneous server

VOLUME 6, 2025 6115

PEREZ-VALERO et al.: MINIMUM-COST DESIGN OF AUTO-SCALING SERVER FARMS

TABLE 1. Key variables used throughout the paper.

deployment (i.e., server homogeneity), meaning that all PMs
are modeled after the same type of server. This assumption
simplifies the operational procedures, as maintaining a
uniform hardware profile reduces management complexity
and operational costs, making heterogeneous deployments
more costly [11]. We describe how our framework can be
adapted to heterogeneous scenarios in Section V-E.

In our paper, we refer with “task” to a traffic ses-
sion, which refers to an instance of a stringent URLLC
service such as remote-assisted driving, an industrial
slice in a factory environment, or tele-operated driving.
Assuming independence among traffic sessions, following
the Palm–Khintchine theorem the aggregate arrival process
asymptotically behaves like a Poisson process.
Following the above, a deployment can be modeled with

a set of parameters that characterizes its performance: each
PM can support a maximum of M tasks, which we refer
to as server capacity, and has an exponential lifetime1 and
boot up times, with average 1/β and 1/α, respectively (the
key variables in our paper are summarized in Table 1).
Following [13], [14], we assume a load-proportional power
consumption model for the PMs, characterized by a fixed
term Pidle, and the proportional term Pload, which can be
computed as the difference in tasks between the so-called
peak power consumption Ppeak and the idle term, i.e.,

1Additional experiments (not reported here due to space constraints)
indicate that our framework also applies to other scenarios. These include:
(i) correlated failures, modeled as a two-state Markov chain with distinct
average lifetimes in each state [12]; and (ii) non-exponential distributions for
boot-up times and lifetimes. Specifically, we tested constant and Weibull-
distributed boot-up times, and Weibull-distributed lifetimes across multiple
server classes, using parameters chosen to match the same mean values as
in the exponential case.

Pload = Ppeak − Pidle
M

. (1)

Each server has a monetary cost K and a lifespan R. We
denote with τi the set of parameters that characterizes a
given server type i, i.e., τi = {Mi, βi, αi,Pidle,i,Pload,i,K,R},
and with T = {τ1, τ2, . . .} the set of candidate server
types.
Tasks arrive to the system following a Poisson process

(note that this assumption is relaxed in our performance
evaluation) at a rate λ and require an exponential service
time of average 1/μ. During the initial planning phase, we
rely on parameter estimates to dimension the system as
optimally as possible, while at runtime, we employ adaptive
mechanisms (such as stochastic optimization [10]) to guide
operational decisions, including determining the number of
active servers. Moreover, system measurements collected
during operation can be used to iteratively refine parameter
estimates, thereby improving system dimensioning over
time.
The IM balances the load across PMs, seamlessly migrates

tasks whenever needed (e.g., a machine is about to fail),
and powers PMs on and off as needed. Each PM can be
in one of three states: active (serving tasks), booting up
(initiating due to a need for more resources), or stopped
(either due to a crash or because they are not needed to
handle the current traffic load). To power on/off the PMs,
the IM implements the following policy. At least one server
is kept active at all times to avoid any delay to serve in
arriving tasks. For the rest of the servers, a threshold-based
policy is followed, where the thresholds to power on or off
a server depend on the number of active servers, denoted
by m: a new server is activated when the number of tasks
in the system reaches sm, and deactivated when the number
of tasks reaches sm − 1. The motivation behind this lack
of hysteresis is motivated by the objective of achieving the
largest possible energy savings, which is accomplished by
keeping the absolute minimum number of servers active
at any given moment to meet performance guarantees [5].
These energy savings are gained at the expense of a higher
frequency of server state transitions, which might lead to
some hardware wear-and-tear.
The farm serves tasks with high reliability requirements,

e.g., an industry 4.0 service [4] or autonomous driving
services [15]. When a task arrives, the IM selects an active
PM with sufficient resources to handle it. If no PMs are
available to handle the task, the IM queues it until either
a task finishes service or a PM boots up. In any case, this
results in a service disruption, which negatively affects the
committed reliability of the task. Since PMs are prone to
failure, an active PMmay crash at any time. If it was processing
tasks, we assume that these can be seamlessly (i.e., with
negligible latency and energy overheads) migrated to another
active PM, where sufficient resources are available –note that
this is already supported in Linux environments [16] with

6116 VOLUME 6, 2025

open-source technologies such as ACHO [17].2 In case there
are not enough active PMs, the affected tasks are placed on
hold until sufficient PMs are activated again, which again is
considered a service disruption.
We assume that the successful provisioning of the service

requires a minimum reliability level. This reliability level
is determined by the probability of a task being disrupted,
which is denoted as Pf , being below a maximum thresh-
old, denoted as Tf . Although the terms “reliability” and
“failure probability” refer to complementary terms, e.g.,
a reliability of 3 nines (99,9%) corresponds to a failure
probability of 10−3, for readability reasons we will use
them interchangeably throughout the paper. To guarantee the
required reliability, we assume that the server farm executes
the algorithm presented in [6], which automatically drives
the (de)activation thresholds {sm} to an adequate point of
operation (note that in [6] we illustrate that the algorithm
provides the most energy saving operation, but we did not
provide the actual values of these parameters). In this paper,
we address the optimal design of the server farm, i.e., given
the set of available candidate server types T , determine the
most appropriate server type, which is denoted by τ ∗, and the
required number of servers, denoted by N, that guarantees
the required performance while minimizing the cost.

IV. ANALYSIS AND DESIGN OF THE SERVER FARM
In this section, we formalize the optimization problem that
we address in this paper, which is the choice of the optimal
server type and the number of servers to support a given
service while minimizing the cost. To this aim, we first
introduce our cost model, and then an analytical model to
characterize the operation of the server farm, which is used
by the algorithm to select the best server type.

A. COST MODEL
Following the usual assumptions in the literature (e.g., [19]),
we assume that the total cost of the server farm composed of
PMs of type τ is given by the sum of the Capital Expenditure
(CapEx) and Operating Expenditure (OpEx).

C(τ) = CCap(τ)+ COp(τ) (2)

where the CapEx term CCap is determined by initial
investments in infrastructure, while the OpEx term COp
is determined by the cost of running and maintaining the
service. More specifically, CCap is determined by the number
of servers required to provide a service N, their cost K, and
the equipment lifespan in hours R, according to:

CCap = N ×
⌈
K

R

⌉
, (3)

2For instance, assuming a failover mechanism over a reliable wired
network, as in [17], and a memory transfer of 64 MB over a 1 Gbps link,
each migration requires approx. 500 ms, which is significantly shorter than
typical session durations. Based on our simulation results and the power
model in [18], this results in an additional power consumption of approx.
0.18 W, which is negligible compared to the idle consumption of a server.

where R is the average lifespan for the type of server
considered, taking into account the expected load and
wear-and-tear effects; the OpEx term is determined by
the resource consumption due to the service provisioning.
Following our previous work [6], this is given by the amount
of resources required to process the tasks, and therefore the
OpEx term can be expressed as

COp = (PloadNu + PidleNa)× kWh (4)

where Nu denotes the average number of users in the server
farm, Na denotes the average number of active servers, and
kWh represents the monetary cost of energy per hour.3 Note
that we consider that the server farm is working continuously
in a time span of a year.
Both (3) and (4) depend on several parameters: a subset of

them corresponds to numerical figures that are determined
for a given server type τi, i.e., K, R, Pload, and Pidle, while
the rest of them depend on the operation conditions, i.e.,
the average number of users Nu, the total number of servers
N, and the average number of active servers Na. We next
present an analytical model to compute these.

B. AVERAGE NUMBER OF USERS NU AND USER
DISTRIBUTION
To compute the average number of tasks and their distribu-
tion, we make the approximation that incoming tasks never
wait to be attended. This approximation is motivated by the
fact that the number of tasks that will have to wait is very
small and hence this approximation will have a very small
impact on the resulting task distribution. Assuming that the
impact of server failures is negligible, the system behaves
as an M/M/∞ system [20], and therefore the probability
of having n users in the system, denoted by pn, follows a
Poisson distribution given by the following expression

pn =
(

λ

μ

)n 1

n!
e−

λ
μ (5)

where the average number of users is

Nu = λ

μ
. (6)

C. TOTAL NUMBER OF SERVERS N
To compute the required number of servers, we look at the
number of servers that are needed to be able to serve all
tasks with a very high probability (provided that all servers
are active). In particular, we enforce that the probability that
an arriving task does not have to wait, when all servers are
active, is well above 1−Tf , i.e., the failure due to all servers
being busy is much smaller than the failure due to other
reasons, which can be as large as Tf . More specifically, we
enforce that the probability that a task does not have to wait
is equal to s = 1 − Tf /X, where X is a sufficiently large

3For simplicity, our cost model assumes a fixed average energy price.
This could be extended to incorporate dynamic pricing (e.g., time-of-day
tariffs) by adjusting for load and cost variations across time periods.

VOLUME 6, 2025 6117

PEREZ-VALERO et al.: MINIMUM-COST DESIGN OF AUTO-SCALING SERVER FARMS

FIGURE 1. Failure probability with activation threshold k = 9 for m = 2 servers with capacity M = 5.

value (unless otherwise stated, in the rest of the paper we
take X = 10).
Note that following (5) the s-percentile of the total number

of users in the system, denoted as Nu(s), is given by

Nu(s) = min

⎧⎨
⎩Q ∈ N

∣∣∣∣∣∣
Q∑
n=0

1

n!

(
λ

μ

)n

e−
λ
μ ≥ s

⎫⎬
⎭ (7)

To meet the requirements stated above, we need to ensure
that the system can host up to Nu(s). This means that, if
the size of a server in tasks is given by M, the number of
servers in the system needs to be dimensioned as follows:

N =
⌈
Nu(s)

M

⌉
(8)

D. AVERAGE NUMBER OF ACTIVE SERVERS NA
Given the user distribution probability {pn} provided by (5),
and the set of activation thresholds {sm}, which is computed
below, the average number of active servers Na is given by

Na = 1+
N∑

m=2

m
sm+1−1∑
n=sm

pn. (9)

where the first term accounts for the fact that there is
always at least one active server active, and the second term
computes the weighted average of a number of servers m
and the probability of having that number of servers active
(there are m active servers if the number of users is between
sm and sm+1 − 1).

E. COMPUTATION OF THE ACTIVATION THRESHOLDS
As described in Section III, the activation thresholds {sm}
are automatically configured using a control theoretical
mechanism [6] that guarantees that the failure probability
Pf is below the target Tf while minimizing the energy
consumption. In this section, we provide a theoretical
analysis to estimate the value of these thresholds.
To perform the analysis, again we neglect the impact of

the finite server lifetime on failures, i.e., we assume that
all service failures are due users arriving to the system
with not enough resources to immediately start service. This
assumption reflects the server farm’s operation, where the

auto-scaling scheme enables re-routing tasks from a failing
server to other available resources; our simulations confirm
such direct failures have a negligible impact on overall
system reliability. We consider a scenario with m active
servers, and assume that the activation threshold for an
additional server is set to k. Following the above, a failure
will occur right after the system has k users (and triggers
the activation of a new server) if the total number of users
exceeds the current total capacity of the farm (m×M) before
another server has been fully activated, which requires a time
Ton. We denote this conditional probability upon arrival as
Pf (k,Ton), which corresponds to the probability of reaching
a state with more than m × M users in less than Ton,
starting from a state with k users. By denoting with Pi,j(t)
the probability of reaching state j from i in less than t, the
probability Pf (k,Ton) can be computed as

Pf (k,Ton) =
NM∑

j=mM+1

Pk,j(Ton) (10)

We exemplify the above formulation with the toy example
depicted in Fig. 1. The figure illustrates a scenario with m =
2 active servers, where each server has a capacity M = 5.
Assuming that the activation threshold for the third server
is k = 9 and a total of N = 10 servers (i.e., a maximum
of 50 simultaneous tasks), the conditional probability of a
failure when the system is in state k = 9 is given by

Pf (9,Ton) =
50∑
j=11

P9,j(Ton) (11)

To compute Pi,j(t), we assume that the transition matrix
of the system Q is the same as the one from a classical
M/M/c queue [21] with c = N.

Based on this, assuming an initial probability distribution
vector P(0), the probability distribution vector after t is given
by [22]

P(t) = P(0)etQ, (12)

and therefore Pi,j(t) can be computed by substituting P(0)

with a distribution vector with 1 in the i-th position.
To determine the activation thresholds, we assume that the

impact of each threshold is independent of the others. We

6118 VOLUME 6, 2025

Algorithm 1 Server Farm Design
Input: Set τi = {Mi, βi, αi,Pidle,i,Pload,i,K,R}, target fail-

ure Tf , service rate μ, arrival rate λ

Output: Optimal server type τ ∗
1: Nu(s)← Using (7) � Compute s-percentile of Nu
2: for τ ∈ T do
3: N ← Using (8) � Compute number of servers
4: {s∗m} ← Using (13b) and (13a) � Compute

activation thresholds
5: Na← Using (9) � Compute avg. number of active

servers
6: C(τ)← Using (2), (3) and (4) � Compute total

cost
7: end for
8: τ ∗ = minτ∈T C(τ) s. t. Pf (τ) ≤ Tf � Select

optimal deployment

also assume that all tasks that arrive while server m is booting
are assumed to have arrived when the number of users in the
system was exactly equal to its activation threshold k (rather
than during states with fewer users). Under these conditions,
Eq. (10) can be used to compute the failure probability
associated with server m when threshold k is applied. Under
these assumptions, the actual failure probability Pf is upper-
bounded by the conditional failure probabilities associated
with the activation of each server. As a result, if we ensure
that each of these conditional probabilities remains below
Tf , so will be the actual failure probability. Following this
reasoning, we estimate the optimal activation thresholds s∗m as

s∗m = max k ∈ [(m− 2)M + 1, . . . , (m− 1)M] (13a)

s.t. Pf (k,Ton) < Tf (13b)

where we select the largest activation threshold out of
those fulfilling the reliability requirement to minimize the
activation of servers and therefore the energy consumption.

F. OPTIMAL DESIGN OF THE SERVER FARM
Following the above, the optimization problem can be
formalized as follows. Let T denote the set of all possible
server types, C(τ) denote the cost of using server type τ

to support the service, and Pf (τ) the corresponding failure
probability. The optimization problem is to find the optimal
server type τ ∗ defined as follows:

τ ∗ = min
τ∈T

C(τ) (14a)

s.t. Pf (τ) ≤ Tf (14b)

Since server types have no relation with each other, nor
between the parameters that characterize their performance,
there is no alternative to performing an exhaustive search
on all server types. We summarize the operation of the
mechanism to design the server farm in Algorithm 1, which
is described next.
The algorithm begins by computing the s-th percentile of

the number of users (line 1). It then iterates over each server

TABLE 2. Deployments considered in the performance evaluation.

type (line 2), computing: the number of required servers
(line 3), the activation thresholds (line 4), used to estimate the
average number of active servers (line 5), and finally the total
cost per server type (line 6). The computational complexity
is dominated by the loop over all server types, which requires
|T | iterations. For each server type, the algorithm computes
N thresholds, each involving the solution of a system of N
equations, resulting in an overall complexity of O(|T |N4).
Assuming that the s-th percentile grows linearly with the
system load λ/μ, the complexity becomes O(|T |(λ/μ)4).
Despite this theoretical increase with the load, the results
below (Fig. 6) show that the computational time remains
practically constant across the tested load values, indicating
that the algorithm scales efficiently in practice.

V. PERFORMANCE EVALUATION
In this section, we first assess the accuracy of the analytical
model, and then validate the proposed algorithm to design
the server farm. Results from the analytical model are
obtained using MATLAB Release 2023a, while simulation
results are obtained using a discrete event simulation written
in C++. This simulator was also used in our previous
works [5], [6], [23]. We perform as many replications as
required until the confidence intervals are below 1% of the
average (not shown for clarity). Note that the simulation does
not relax certain assumptions of the analytical model such
as the server infallibility. All computations are performed on
a server equipped with an Intel Core i7 CPU with 4 cores,
8 threads, operating at a base frequency of 1.30GHz, and
supported by 16 GB of RAM.
We assume that boot up times and lifetimes are expo-

nential random variables too, with an average that depends
on the server type τ . We focus on the following set of
target failure probabilities Tf = {10−3, 10−4, 10−5}, which
correspond to a reliability between three nines (99.9%) and
five nines (99.999%).

A. SERVER TYPES
In our experiments, we consider five different server types,
ranging from cost-effective consumer-grade machines to
high-performance blade servers. These configurations were
previously defined in [6], [23], and for completeness, we
summarize their performance parameters in Table 2. The
selected server types cover a broad range of characteristics,

VOLUME 6, 2025 6119

PEREZ-VALERO et al.: MINIMUM-COST DESIGN OF AUTO-SCALING SERVER FARMS

ensuring that our analysis and design are validated under
diverse conditions. However, our analysis is not tied to these
specific configurations, i.e., our model can be applied to
assess the performance of alternative parameterizations and
support the design of other server farm architectures. Lastly,
we emphasize that this list is not an exhaustive catalog of
possible server types.

B. MODEL VALIDATION
We first confirm the validity of the analytical model to
estimate the required performance figures to compute the
cost for a given configuration τ , namely, the average number
of users Nu, the number of servers N, and the average number
of active servers Na, which in turn depends on the activation
thresholds {sm}. To this aim, we next compare the results
obtained using the analytical model with those obtained
using simulations. To obtain these, we use the following
methodology. For a given value of λ and μ, we initially set
the number of servers to N = λ/μ (i.e., the load in Erlangs),
and run the simulations using the configuration algorithm
in [6] that aims at minimizing resource consumption while
ensuring that the failure probability Pf is below the target
value Tf . If Pf is above Tf , we increase the number of
servers N by one and repeat the process, until Pf is below Tf .
Throughout or model validation, we consider three different
inter-arrival distributions, each represented with a distinct
symbol in the figures:

• Exponential distribution, with rate λ =
{0.2, 0.4, . . . , 4.0} tasks/min.

• Pareto distribution, with shape parameter α = 2 and
scale parameter xm = {2.5, 1.25, . . . , 0.125} min/tasks.

• Weibull distribution, with shape parameter k = 2 and
scale parameter θ = {5.6, 1.12, . . . , 0.28} min/tasks.

1) AVERAGE NUMBER OF USERS AND DISTRIBUTION
OF USERS

We start our model validation by comparing the analytical
results of Section IV-B with those obtained via simulations.
We first compare the average number of users obtained
using (6) with those computed using simulations, for all
considered server types and the different arrival rates
considered.
We present the results in Fig. 2, using points for the

simulation results and lines for the analytical values. The
figure confirms the good accuracy of the analytical model,
since the results practically overlap.
We also compare the distribution of users using (5) with

those computed using simulations, for all the server types
and three selected values of λ. We depict the probability
mass function of the user distribution in Fig. 3, using bins
for simulation results and black lines for the analytical
values obtained using (5). These results also confirm the
accuracy of the distribution of users of the analytical model,
as the differences between the theoretical and experimental
distributions are very small.

0

50

100

150

200

250

0 1 2 3 4

Av
er

ag
e

nu
m

be
r o

f u
se

rs

Analysis

Exponential
Pareto
Weibull

FIGURE 2. Average number of users vs. λ using analysis (lines) and simulation
(symbols).

FIGURE 3. User distribution for different λ values: analysis (line) and simulation
(bins and symbols).

2) TOTAL NUMBER OF SERVERS

Here we assess the validity of our analysis to dimension
the server farm. To this aim, we compare the total number
of servers N required to guarantee Pf < Tf using the
methodology described for the simulations with the values
obtained via (8). We perform the comparison for the same
values of λ as before and all server types using Tf = 10−4,
and depict the corresponding results in Fig. 4, using lines
for the analytical results and points for those obtained using
simulations.
Like in the previous case, the results confirm the accuracy

of the model, as the results practically overlap for all
considered values of λ and server type, with an average
error of 4.6% and the maximum error being below 10%.
As expected, the number of required servers grows with the
inverse of the server capacity M, with the consumer-grade
server type requiring the maximum number of servers, and
the blade type the minimum. We find that the analytical
figures are always above the ones obtained using simulations,
and therefore the total number of servers according to our

6120 VOLUME 6, 2025

FIGURE 4. Maximum number of servers vs. λ using analysis (lines) and simulation
(symbols).

design never falls below the required number of servers.
Finally, we conducted the same experiment for the rest of
server types and Tf values, obtaining an average error of
4.8% and a maximum error below 12%.

3) ACTIVATION THRESHOLDS

Here we validate the analysis presented in Section IV-E
to estimate the values of the activation thresholds {sm}
configured by the algorithm. To this aim, we first focus on
the configurations using the rack server type and set Tf =
10−3 as the maximum failure probability, and compare the
first eight values of the vector {sm} for different values of
the arrival rate λ as in the previous sections. The simulation
(Sim.) and analytical (Ana.) results are presented in Table 3,
as well as the difference (�s).

The table illustrates that as the load grows, the activation
thresholds decrease, since servers need to be activated with
more anticipation to accommodate the incoming tasks. It
also shows a good match between the results predicted
by the model and those obtained using simulations, with
a mean absolute difference of 0.6 tasks and a maximum
difference of 2 tasks. We repeated the same experiment for
the other types of servers and the considered Tf values,
with the mean absolute difference being 0.7 tasks and the
maximum absolute difference being 2 tasks. These results
again confirm the accuracy of the analytical model to
estimate the configuration of the server farm.

4) AVERAGE NUMBER OF ACTIVE SERVERS

Finally, we assess the accuracy of (9) to estimate the average
number of active servers, using the same methodology as
before. As in the previous cases, we first assume Tf =
10−4 and different values of the traffic load. We represent in
Fig. 5 with lines the results from the analytical model and
with points those using simulations. The figure confirms the
accuracy of the model, with an average absolute error of

TABLE 3. Activation thresholds for the rack server deployment and different values
of λ.

FIGURE 5. Average number of active servers vs. λ using analysis (lines) and
simulation (symbols).

0.45 servers and a maximum absolute error of 0.62 servers.
Like in the case of Fig. 4, the larger the capacity M of the
server type, the smaller the average number of active servers.
Based on the above results, we confirm the accuracy of

the analytical model to predict the performance of a server
farm for different traffic loads, reliability requirements, and
server types. We next assess the performance of the algorithm
proposed to design the server farm.

C. DESIGN OF THE SERVER FARM
Following the validation of the analytical model, we next
assess the performance of the algorithm presented in

VOLUME 6, 2025 6121

PEREZ-VALERO et al.: MINIMUM-COST DESIGN OF AUTO-SCALING SERVER FARMS

TABLE 4. Minimum cost design using simulations (Cs), our analysis (Ca), and the benchmark (Cb).

Section IV-F to design a server farm. To this aim, we assume
the same set of traffic rate values λ and target failure proba-
bility levels Tf = {10−3, 10−4, 10−5} considered before. To
provide an adequate context, we compare the results from
our algorithm against two benchmarks:

• An exhaustive search in the configuration space.
• A benchmark based on the Erlang-C [24], which
determines for each type of server the number of
resources required to ensure that the probability of
blocking meets a specific reliability target (i.e., PB =
1− R), and selects the minimum.

For each considered scenario, we compute:

• For each of the five server types considered, the
minimum cost (Cs) obtained via simulations using a
search on the total number of servers.

• The optimal server type τ ∗ and corresponding cost (Ca)

according to our algorithm.
• The difference between the minimum cost obtained with
the numerical search and the one obtained with our
algorithm (�C).

• The cost of the benchmark design Cb based on the
Erlang-C, and the corresponding difference vs. Ca,
denoted as �B.

We provide the resulting figures for the λ and Tf values
considered in Table 4. For each scenario, we highlight in
gray the minimum cost obtained using simulations, and
in bold font the resulting τ ∗ whenever the best type of
server according to our method corresponds to the one that
minimizes costs using simulations.

There are several results that can be derived from Table 4.
First, both for simulations and analysis, the minimum cost
increases as the load increases, since more resources are
needed to accommodate the incoming traffic. Second, there
is no optimal server configuration for all scenarios, as the
best server type alternates between the five considered types
depending on the load and reliability considered. Third, we
note that our configuration algorithm provides the optimal
server type in 16 out of the 18 scenarios considered (i.e.,
88.8% of the scenarios), and that for those two scenarios
the relative error in terms of cost is smaller than 2%. The
average cost difference between the configuration provided
by the algorithm and the simulations is 3%, which confirms
the effectiveness of our proposal to design a server farm.
Fourth, the comparison of the cost between the analysis (Ca)
and benchmark (Cb) highlights the advantages of using our
proposed method over a predefined benchmark configuration.
We note that the absolute cost for the benchmark is notably
higher than the one by the analysis for all combinations.
The benchmark consistently results in a higher number
of servers due to its more pessimistic assumptions. The
relative cost difference (�B) demonstrates that relying on
a fixed server configuration can lead to significant cost
inefficiencies, with the benchmark costing on average 22%
more than the optimized analysis-based approach. In some
cases, such as λ = 0.2 and Tf = 10−4, the cost increase
reaches 54%, reinforcing the importance of dynamically
selecting the optimal server type rather than adhering to a
static deployment strategy. Finally, the table also highlights
the importance of an adequate selection of the best server

6122 VOLUME 6, 2025

FIGURE 6. Execution time vs. lambda required by simulation (dashed lines) and
analysis (continuous lines) for different values of Tf .

type, in addition to its optimal configuration, since there
are substantial differences in terms of cost between optimal
server deployments with different types. For instance, for
λ = 0.2 and Tf = 10−3 (first row of the table), there is
a factor of 3.33× between the minimum cost using the
Enterprise type of server and the one using the Rack type
of server, while the average difference is 1.64×.

D. COMPUTATIONAL TIME
Finally, we compare the time to determine the optimal design
using the method presented in Section IV with a exhaustive
search using simulations. To this aim, we compute the total
execution time required for each approach. We assume the
same scenarios as before with different values of λ and the
reliability levels Tf = {10−3, 10−4, 10−5}. We illustrate the
results in Fig. 6, using a logarithmic scale on the y axis.

According to the figure, the proposed method results in
significantly shorter execution times for all values of λ and
Tf . Furthermore, these times are practically constant, while
simulation times increase with the traffic load, and with
the inverse of Tf . Based on these results, we conclude that
the analysis developed in Section IV offers a cost-effective
solution, particularly well suited for scenarios demanding
robust, scalable, and resource-efficient methodologies.

E. HETEROGENEOUS SCENARIOS
As discussed in Section III, we initially consider homoge-
neous scenarios, where a single type of service is provided
by a single type of server. In this section, we relax this
assumption to demonstrate how the proposed framework can
be extended to design heterogeneous scenarios. Specifically,
we consider a case with two types of services, labeled 1
and 2. Both have the same service rate μ, but differ in their
reliability requirements, T1 and T2, as well as their arrival
rates, λ1 and λ2, respectively.

TABLE 5. Heterogeneous scenarios.

One way to design a heterogeneous server farm using
our framework is to independently determine the optimal
server type for each type of traffic. We denote these as τ ∗i
for i ∈ 1, 2. Assuming that the Infrastructure Manager (IM)
redirects each type of task to the corresponding server type,
the total cost of this heterogeneous design is given by:

Chet = C
(
τ ∗1

)+ C(
τ ∗2

)
(15)

As a benchmark, we assume a homogeneous design to
support the total traffic λ1 + λ2 and the most stringent
reliability requirement, min(T1,T2). The resulting cost of
this design is denoted as Chom. Table 5 presents the resulting
values of Chet and Chom for different values of λ1, λ2, T1,
and T2. It also reports the relative difference between the
homogeneous and the heterogeneous design, �B. Note that
for some scenarios, the cost Chom is reused from Table 4.

The results confirm that our proposal can be extended
to heterogeneous scenarios, as most configurations yield
additional cost savings –up to 6.4% in some cases. However,
these gains remain moderate due to two main factors. First,
traffic is isolated across server types, which prevents poten-
tial multiplexing gains. Second, our homogeneous design
already performs well, leaving limited room for further
improvement except in specific scenarios. As discussed in
Section VII, our ongoing work focuses on developing novel
analytical models to more effectively address the design of
heterogeneous server farms.

VI. RELATED WORK
A. RESOURCE ALLOCATION FOR NFV
The research community has shown significant interest
in dynamically managing cloud resources to minimize
consumption. For example, in [25], the authors analyze
the impact of various static algorithms for activating and
deactivating resources, as well as reallocating tasks within
a data center, with a focus on reducing energy consump-
tion and minimizing service violations. In a subsequent
study [26], they suggest adapting thresholds based on
estimated conditions. Finally, control theory has historically

VOLUME 6, 2025 6123

PEREZ-VALERO et al.: MINIMUM-COST DESIGN OF AUTO-SCALING SERVER FARMS

been leveraged for energy-efficient resource allocation in
cloud computing systems, as outlined in [27]. For exam-
ple, [28] applies control theory principles for load balancing
and CPU frequency selection, which differ from our previous
work [6] where control theory is applied to drive the system
to the desired reliability levels while minimizing energy
consumption. However, the techniques proposed therein
tackle distinct challenges compared to those addressed in
our paper, and none specifically account for both the waiting
queue time of the tasks and the fact that servers has non-zero
boot up times.

B. ANALYSIS OF RELIABILITY IN NFV
The study by [29] meticulously examines the reliability of a
carrier-grade server system, employing a fault tree model at
a high level that intricately links various lower-level Markov
models. These models account for the inherent fallibility of
hardware components such as CPUs and memory modules.
A similar methodology is pursued in [30], where the authors
examine the reliability of both virtualized and non-virtualized
systems comprising two hosts. Furthermore, [31] delves
into a related system, conducting a sensitivity analysis to
pinpoint parameters that significantly impact reliability. A
closer examination akin to our research is presented in [9],
where a Markov chain is used to model a server farm,
factoring in setup delays concerning response time and power
consumption. Similarly, [3] explores the analysis within
the realm of 5G/6G networks, using thresholds to manage
instance power and performance evaluation in terms of power
consumption and waiting time. However, none of these works
have proposed a theoretical model to asses the design of an
optimal server farm, targeting a desired level of reliability
while minimizing infrastructure costs.

C. NFV AND RELIABILITY
In prior works [5], [6], [23], we have addressed a system
similar to the one studied in this paper. In [5], we character-
ized service reliability and derived an optimal configuration
of the server farm to support a required reliability while
minimizing the resource consumption. In [23], we studied
the trade-offs of a server farms in terms of reliability and
power consumption based on a static configuration. Our
analyses of [5], [23] are static and require knowledge about
the system load, while other proposal rely on stochastic
optimization [10] to find the best trade-off between resource
consumption and average waiting time. In [6], we introduced
a control theory algorithm that dynamically adapted the
configuration to reach the desired point of operation.
However, all these papers assumed a fixed server farm
where machines are characterized in terms of a number of
parameters (e.g., energy consumption, capacity, lifetime). In
contrast to this analysis and configuration problems, in this
paper we address the design problem: given a given a set of
parameters defining a service and a list of candidate server
types, that could be used to deploy the server farm, select
the most adequate server type to support the service.

VII. CONCLUSION AND FUTURE WORK
Designing auto-scaling server farms requires balancing reli-
ability and cost, complicated by activation delays, finite
lifespans, and failure risks. Traditional methods often ignore
these factors or over-provision, raising costs. In this paper,
we present a framework that combines queueing theory,
cost modeling, and server selection to identify minimum-
cost deployments. Our approach considers boot-up times
and failure probabilities, ensuring reliable service at minimal
cost. The proposed methodology is particularly well suited
for latency- and reliability-sensitive applications, such as
industrial automation, autonomous vehicle coordination,
and mission-critical IoT deployments in 5G and beyond
networks.
As part of our ongoing and future work, we are exploring

several key directions to enhance the applicability and
realism of our framework. First, we aim to improve
the design of heterogeneous scenarios. While the current
approach assigns a dedicated and independently optimized
server type to each service class, we plan to develop
more sophisticated strategies that enable resource sharing
and exploit multiplexing gains across services. Second, we
intend to incorporate network latency into the optimization
process by accounting for the performance characteristics
of the RAN [32], the underlying network topology, and the
VNF chaining architectures. This will involve probabilistic
modeling of end-to-end latency to better support URLLC
requirements. Finally, we are extending our implementation
over Linux-based architectures [16] integrating a load bal-
ancing mechanism with ACHO’s [17] seamless migration
capabilities, enabling more efficient and resilient deployment
of virtualized services.

REFERENCES
[1] P. Rost et al., “Network slicing to enable scalability and flexibility in

5G mobile networks,” IEEE Commun. Mag., vol. 55, no. 5, pp. 72–79,
May 2017.

[2] M. Gramaglia, P. Serrano, A. Banchs, G. Garcia-Aviles, A. Garcia-
Saavedra, and R. Perez, “The case for serverless mobile networking,”
in Proc. IFIP Netw. Conf. (Networking), 2020, pp. 779–784.

[3] Y. Ren, T. Phung-Duc, J. Chen, and Z. Yu, “Dynamic auto scaling
algorithm (DASA) for 5G mobile networks,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Washington DC, USA, Dec. 2016,
pp. 1–6.

[4] Č. Stefanović, “Industry 4.0 from 5G perspective: Use-cases, require-
ments, challenges and approaches,” in Proc. 11th CMI Int. Conf.
Prospects Challenges Towards Developing Digit. Econ. EU, 2018,
pp. 44–48.

[5] J. Ortin, P. Serrano, J. Garcia-Reinoso, and A. Banchs, “Analysis
of scaling policies for NFV providing 5G/6G reliability levels with
fallible servers,” IEEE Trans. Netw. Service Manag., vol. 19, no. 2,
pp. 1287–1305, Jun. 2022.

[6] J. Perez-Valero, A. Banchs, P. Serrano, J. Ortín, J. Garcia-Reinoso,
and X. Costa-Pérez, “Energy-aware adaptive scaling of server farms
for NFV with reliability requirements,” IEEE Trans. Mobile Comput.,
vol. 23, no. 5, pp. 4273–4284, May 2024.

[7] J. Liu, Z. Jiang, N. Kato, O. Akashi, and A. Takahara, “Reliability
evaluation for NFV deployment of future mobile broadband networks,”
IEEE Wireless Commun., vol. 23, no. 3, pp. 90–96, Jun. 2016.

[8] L. Qu, C. Assi, K. Shaban, and M. J. Khabbaz, “A reliability-aware
network service chain provisioning with delay guarantees in NFV-
enabled enterprise datacenter networks,” IEEE Trans. Netw. Service
Manag., vol. 14, no. 3, pp. 554–568, Sep. 2017.

6124 VOLUME 6, 2025

[9] A. Gandhi, M. Harchol-Balter, and I. Adan, “Server farms with
setup costs,” Perform. Eval., vol. 67, no. 11, pp. 1123–1138, 2010.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0166531610000957

[10] A. Song, W. Wang, and J. Luo, “Stochastic modeling of dynamic
power management policies in server farms with setup times and
server failures,” Int. J. Commun. Syst., vol. 27, no. 4, pp. 680–703,
2014. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/dac.2761

[11] J. Burge, P. Ranganathan, and J. L. Wiener, “Cost-aware scheduling
for heterogeneous enterprise machines (cash’em),” in Proc. IEEE Int.
Conf. Clust. Comput., 2007, pp. 481–487.

[12] K. Goseva-Popstojanova and K. Trivedi, “Failure correlation in
software reliability models,” in Proc. 10th Int. Symp. Softw. Rel. Eng.,
1999, pp. 232–241.

[13] A. Vasan, A. Sivasubramaniam, V. Shimpi, T. Sivabalan, and
R. Subbiah, “Worth their watts? An empirical study of datacenter
servers,” in Proc. 16th Int. Symp. High-Perform. Comput. Archit.,
2010, pp. 1–10.

[14] G. Chen et al., “Energy-aware server provisioning and load dispatching
for connection-intensive Internet services,” in Proc. 5th USENIX Symp.
Netw. Syst. Design Implement., 2008, pp. 337–350.

[15] “Vehicular connectivity: C-V2X and 5G,” White Paper, 5G
Americas, Bellevue WA, USA, 2021. [Online]. Available: https://www.
5gamericas.org/vehicular-connectivity-c-v2x-and-5g/

[16] S. K. Singh, Linux Yourself: Concept and Programming, 1st ed.Boca
Raton, FL, USA: Chapman and Hall/CRC, 2021. [Online]. Available:
https://doi.org/10.1201/9780429446047

[17] G. Garcia-Aviles, C. Donato, M. Gramaglia, P. Serrano, and
A. Banchs, “Acho: A framework for flexible re-orchestration of
virtual network functions,” Comput. Netw., vol. 180, Oct. 2020,
Art. no. 107382.

[18] J. A. Aroca, A. Chatzipapas, A. F. Anta, and V. Mancuso, “A
measurement-based characterization of the energy consumption in
data center servers,” IEEE J. Sel. Areas Commun., vol. 33, no. 12,
pp. 2863–2877, Dec. 2015.

[19] M. Ananth and R. Sharma, “Cloud management using network
function virtualization to reduce CAPEX and OPEX,” in Proc. 8th
Int. Conf. Comput. Intell. Commun. Netw. (CICN), 2016, pp. 43–47.

[20] L. Kleinrock, Theory, Volume 1, Queueing Systems. New York, NY,
USA: Wiley-Intersci., 1975.

[21] G. Bolch, S. Greiner, H. De Meer, and K. S. Trivedi, Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
With Computer Science Applications. Hoboken, NJ, USA: Wiley, 2006.

[22] K. Rupp et al., “Differentiated uniformization: A new method for
inferring Markov chains on combinatorial state spaces including
stochastic epidemic models,” Comput. Stat., vol. 39, pp. 3643–3663,
Jan. 2024.

[23] J. Perez-Valero, J. Garcia-Reinoso, A. Banchs, P. Serrano, J. Ortin,
and X. Costa-Perez, “Performance trade-offs of auto scaling schemes
for NFV with reliability requirements,” Comput. Commun., vol. 212,
pp. 251–261, Dec. 2023.

[24] T. R. Robbins, D. J. Medeiros, and T. P. Harrison, “Does the Erlang C
model fit in real call centers?” in Proc. Winter Simulat. Conf., 2010,
pp. 2853–2864.

[25] A. Beloglazov and R. Buyya, “Energy efficient allocation of virtual
machines in cloud data centers,” in Proc. 10th IEEE/ACM Int. Conf.
Clust., Cloud Grid Comput., 2010, pp. 577–578.

[26] A. Beloglazov and R. Buyya, “Adaptive threshold-based approach
for energy-efficient consolidation of virtual machines in cloud data
centers,” in Proc. 8th Int. Workshop Middleware Grids, Clouds
e-Science, 2010, pp. 1–6.

[27] A. Hameed et al., “A survey and taxonomy on energy efficient resource
allocation techniques for cloud computing systems,” Computing,
vol. 98, no. 7, pp. 751–774, Jun. 2014.

[28] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response
time guarantees for virtualized enterprise servers,” in Proc. Real-Time
Syst. Symp., 2008, pp. 303–312.

[29] W. E. Smith, K. S. Trivedi, L. A. Tomek, and J. Ackaret, “Availability
analysis of blade server systems,” IBM Syst. J., vol. 47, no. 4,
pp. 621–640, 2008.

[30] D. S. Kim, F. Machida, and K. S. Trivedi, “Availability modeling and
analysis of a virtualized system,” in Proc. 15th IEEE Pacific Rim Int.
Symp. Dependable Comput., 2009, pp. 365–371.

[31] R. d. S. Matos, P. R. M. Maciel, F. Machida, D. S. Kim, and
K. S. Trivedi, “Sensitivity analysis of server virtualized system
availability,” IEEE Trans. Rel., vol. 61, no. 4, pp. 994–1006, Dec.
2012.

[32] O. Adamuz-Hinojosa, L. Zanzi, V. Sciancalepore, A. Garcia-Saavedra,
and X. Costa-Pérez, “ORANUS: Latency-tailored orchestration via
stochastic network calculus in 6G O-RAN,” in Proc. IEEE Conf.
Comput. Commun., 2024, pp. 61–70.

JESUS PEREZ-VALERO received the Ph.D. degree
from the Universidad Carlos III de Madrid in 2024.
He is currently a Postdoctoral Researcher and a
Lecturer with the Universidad de Murcia. He has
been involved in several projects funded by the
European Commission through the SNS. His main
research interests lie in the performance analysis
and optimization of communication systems.

PABLO SERRANO (Senior Member, IEEE) is an
Associate Professor with the University Carlos
III de Madrid. His research interests lie in the
analysis of wireless networks and the design
of network protocols and systems. He cur-
rently serves as Editor for IEEE OPEN JOURNAL

OF THE COMMUNICATION SOCIETY and IEEE
TRANSACTIONS ON MOBILE COMPUTING.

JAIME GARCIA-REINOSO (Member, IEEE)
received the Telecommunications Engineering
degree from the University of Vigo, Spain, in
2000, and the Ph.D. degree in telecommunications
from the University Carlos III of Madrid, Spain,
in 2003. He has been an Associate Professor with
the University of Alcala, Spain, since 2021. He
has published over 60 papers in top magazines
and conferences. He has been involved in many
international projects on next generation networks,
5G, SDN, and NFV.

ALBERT BANCHS (Senior Member, IEEE) holds
a dual appointment as a Professor with the
University Carlos III of Madrid and as the
Deputy Director of the IMDEA Networks
Institute. He has served on numerous TPCs
and on the editorial boards of several jour-
nals, including the IEEE TRANSACTIONS ON

WIRELESS COMMUNICATIONS and the IEEE
TRANSACTIONS ON NETWORKING. He has also
contributed extensively to European research
projects and industry collaborations.

XAVIER COSTA-PEREZ (Senior Member, IEEE)
is an ICREA Research Professor, the Scientific
Director of the i2cat Research Center, and
the Head of 5G Networks R&D with NEC
Laboratories Europe. His research focuses on
the transformation of society driven by the
interplay of mobile networks and AI. He is
currently serving as an Associate Editor for
IEEE TRANSACTIONS ON MOBILE COMPUTING,
IEEE TRANSACTIONS ON COMMUNICATIONS,
and Computer Communications (Elsevier).

VOLUME 6, 2025 6125

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

